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Abstract
The ability to learn from and remember experiences (episodic memory) depends on multiple neurocognitive systems. 
In this article, we highlight recent advances in methods and theory that are unveiling how mechanisms of attention 
impact episodic memory. We first provide a high-level overview of the construct and neural substrates underlying 
attention and related goal-state processes, along with their interactions with memory. We then highlight budding 
evidence supporting the rhythmic nature of memory and attention, raising key questions about the role that the 
oscillatory phase of attention rhythms plays on memory encoding and retrieval. Third, we consider how understanding 
age-related changes in memory and attention can be further advanced by assaying the precision of memory. Last, we 
illustrate how real-time closed-loop experiments provide opportunities to test causal relationships between attention 
and memory. Along the way, we raise open questions and future research directions about how attention-memory 
interactions enable learning and remembering in the mind and brain.
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Hallmarks of human cognition, such as forming and 
carrying out complex plans in pursuit of goals or flex-
ibly engaging in intricate and dynamic social interac-
tions, are supported in part by an ensemble of 
neurocognitive mechanisms that enable episodic mem-
ory—that is, the ability to learn and later bring back to 
mind details from past experiences. Although much 
progress has been made in understanding episodic 
memory, there remain open questions about some of 
the key mechanisms that impact remembering or forget-
ting in any given moment. Attention, in particular, is 
one set of processes implicated in learning and remem-
bering since the earliest investigations into episodic 
memory (Ebbinghaus, 1885/2013). Over the ensuing 
decades, remarkable advances have been made in 
understanding multiple forms of attention and how 
attention mechanisms modulate learning and lead to 
variability in whether and how we remember. Here, we 
highlight recent methodological advances and concomi-
tant theoretical insights into how attention impacts 

learning and remembering and note important open 
questions and promising future directions.

Interactions Between Neural Networks 
of Attention, Goal-State Processes,  
and Memory

Cognitive scientists and neuroscientists have made tre-
mendous progress in specifying and measuring differ-
ent forms of attention, their neural mechanisms, as well 
as their interactions with related cognitive control pro-
cesses. A central insight is the dichotomous nature of 
attention. Namely, there is top-down (goal-directed or 
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endogenous) orienting of attention to and selection of 
goal-relevant stimuli, which contrasts with bottom-up 
(stimulus-driven or exogenous) attentional capture 
(e.g., Corbetta & Shulman, 2002; Posner & Petersen, 
1990). To illustrate, consider this real-world driving sce-
nario: While preparing to turn onto a specific street, 
top-down selective attention is directed toward street-
name signs, whereas bottom-up attentional capture is 
prompted by the unexpected event of a dog running 
out from between two parked cars. Top-down and 
bottom-up attention systems dynamically interact with 
related mechanisms of cognitive control, including 
those that subserve the representation of goals and 
enable goals to govern attention and information pro-
cessing. The interactions between attention and cogni-
tive control are bidirectional: Not only do goal states 
influence attention, but attention also impacts goal 
representation.

As depicted in Figure 1a, there are three frontopari-
etal networks central to attention and cognitive control: 
top-down attention via the dorsal attention network, 
bottom-up attention via the ventral attention network, 
and the cognitive control network (also known as the 
frontoparietal control network; Cole & Schneider, 2007; 
Corbetta & Shulman, 2002; Corbetta et al., 2008; Menon 
& D’Esposito, 2022). With respect to episodic memory, 
attention and cognitive control mechanisms can affect 
the representations of perceived and retrieved event 
features in the neocortex along with memory-relevant 
computations and representations within the medial 
temporal lobe (e.g., Cabeza et  al., 2008; Dobbins & 
Wagner, 2005; Hutchinson et  al., 2014; Uncapher & 
Wagner, 2009). Both the intensity of attention as well 
as its selectivity are at least two ways in which attention 
impacts memory encoding and retrieval.

New insights into interactions between attention, 
cognitive control, and memory have come from studies 
leveraging readouts of attention and/or goal states dur-
ing the acquisition and expression of episodic memo-
ries. This includes utilizing temporally resolved 

psychophysiological tools—such as reaction-time vari-
ability, pupil diameter, and posterior alpha (8–12 Hz) 
power (see Table 1) assayed via scalp EEG—to mea-
sure moment-to-moment attentional fluctuations and 
between-individuals attentional variability. Adopting 
these tools, multiple studies have revealed that the 
strength of top-down attention just prior to and during 
learning or an attempt to remember correlates with 
memory performance (i.e., readiness to learn and readi-
ness to remember; e.g., Cohen et  al., 2015; Madore 
et al., 2020; Madore & Wagner, 2022; Miller & Unsworth, 
2020; Miller et al., 2019; Robison et al., 2022).

To illustrate, one recent experiment examined inter-
actions between attention, goal coding, and memory 
using a goal-directed associative memory task in which 
during each retrieval trial (Fig. 1b) participants were 
asked to indicate whether they remembered a test 
probe as having been previously encountered in one 
of two task contexts during an immediately preceding 
study phase.1 During the retrieval phase, participants 
were cued with one of three retrieval goals on any 
given trial. Readouts of top-down attention just prior 
to goal cueing included pupil size and EEG posterior 
alpha power, and the strength of goal coding was mea-
sured via a midfrontal event-related potential elicited 
by the retrieval goal cue.2 Analyses revealed that goal-
coding strength varied as a function of the level of 
attention evident in the moment just prior to retrieval 
goal onset and that these interactions between attention 
and goal coding predicted whether retrieval would be 
successful or unsuccessful (Fig. 1c; Madore & Wagner, 
2022; Madore et  al., 2020). Thus, attention impacts 
retrieval success in part by affecting the representation 
and maintenance of one’s mnemonic goal.

Other work utilizing temporally resolved psycho-
physiological tools has revealed additional ways in 
which memory processes regulate attentional control, 
such as when mnemonic prediction errors signal stimu-
lus or event salience, leading to attention orienting 
(den Ouden et al., 2012) and, in turn, influencing the 

Table 1.  Glossary

• � Posterior alpha (8–12 Hz) power: A quantity derived from a cluster of posterior scalp EEG electrodes (over the occipital and parietal 
cortex) representing the squared amplitude of sinusoidal components typically within the frequency range between 8 and 12 Hz. Decreases in 
alpha power are often associated with engagement of top-down attention.

• � Pattern-classification methods: Machine-learning-based approaches in which a classifier is trained to differentiate the patterns of brain 
activity associated with two or more experimental conditions and/or behavioral outcomes. The classifier is tested on independent brain 
patterns from held-out trials after training and can be used to quantify the strength of pattern evidence on any given test trial. For functional 
MRI (fMRI), the patterns used for training and tests constitute a vector of voxels from a brain region; when applied to fMRI data, this method is 
often referred to as multivoxel pattern analysis.

• � Event-based feature representation: Neural pattern of activity elicited by an encountered stimulus or event and thought to code for an aspect 
(feature) of the event. The strength or fidelity of an event-based feature representation can be quantified with pattern-classification methods.

• � Neocortical structural variability: Interindividual differences in brain morphology in the neocortex. One example is differences in gray 
matter volume (which relates to structural integrity) in a particular neocortical region.

• � Closed-loop interface: Self-regulating system in which the output controls the input, which in turn controls the output (e.g., a thermostat).
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Fig. 1.  Assessing the influence of attention on memory retrieval. Shown in (a) are the frontoparietal networks of attention and 
cognitive control derived from network parcellations computed from the full sample (N = 1,000) in Yeo et al. (2011). The schematic 
of the goal-directed memory-retrieval task used in Madore et al. (2020) shows (b) that pre-goal lapsing was measured using EEG 
posterior alpha power and pupil size in the last 1 s of the ITI, whereas goal-coding strength was measured using a retrieval goal-
cue-locked ERP extracted from a midfrontal cluster of electrodes. In (c) the 1 s prior to the onset of the retrieval goal cue, pupil 
size (and posterior alpha power; not shown) significantly correlated with retrieval success, and midfrontal EEG goal-coding strength 
partially mediated this effect (n = 75; Madore et al., 2020). DAN = dorsal attention network; VAN = ventral attention network; CCN = 
cognitive control network; ITI = intertrial interval; ERP = event-related potential. Created in BioRender (Schwartz, 2025a). https://
BioRender.com/mejp1fu. 

encoding of unexpected information (Bein et al., 2021). 
Complementing these findings, new data also indicate 
that the top-down/bottom-up dichotomy of attentional 
control is insufficient for explaining situations for 
which neither goals nor salience account for biases in 
selective attention (e.g., rewards associated with 
equally salient stimuli in conflict with current selection 
goals; Awh et  al., 2012). Selection history (broadly 
construed) is argued to be a missing construct of atten-
tional control (for a review, see Anderson et al., 2021), 

in which mnemonic traces of prior experience (across 
varying timescales) enable memory-guided attention 
that can not only reconstitute (i.e., “re-member”) rel-
evant representations of past experiences but also 
leverage forward-looking memory traces (i.e., “pre-
member”) that functionally interact with incoming sen-
sory signals to prospectively regulate attentional 
control and guide behavior (Hutchinson & Turk-
Browne, 2012; Nobre & Stokes, 2019). Integrating pre-
diction error and selection history accounts with 
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computational formalism promises to yield more com-
prehensive theories of the dynamic interactions of 
attention and episodic memory and their consequences 
for learning and remembering.

Rhythmic Nature of Attention  
and Memory

Understanding how attention impacts memory is further 
enabled by characterizing their temporal dynamics. 
Growing evidence, primarily from temporally dense 
sampling of behavior, suggests that attention operates 
rhythmically predominantly in the theta (between 
approximately 4 and 7 Hz) and/or alpha (between 
approximately 8 and 12 Hz) frequency ranges (e.g., 
Fiebelkorn & Kastner, 2019; VanRullen, 2016; VanRullen 
& Dubois, 2011). Critically, a key assumption is that the 
cue resets the ongoing phase of the attention rhythm; 
therefore, by systematically varying the delay between 
the cue and the stimulus, one can sample different 
phases of the attention rhythm. Even under conditions 
in which attention is supposedly sustained, such as 
during trials with valid cues (meaning attention is 
directed to the location where the target ultimately 
appears), rhythmic attention fluctuation can still be 
observed. This implies that there are optimal and sub-
optimal phases of attention for information processing 
alternating in cycles of about 200 ms. Importantly, given 
interactions between attention and memory, this raises 
fundamental questions about potential rhythmicity in 
memory behavior (Biba et  al., 2024; Ter Wal et  al., 
2021), its underlying neural mechanisms, and the 
impact of rhythms of attention on memory function. A 
key open question is whether memory encoding and 
retrieval depend, in part, on the phase of the ongoing 
attentional rhythm at which to-be-encoded information, 
retrieval cues, or retrieval products fall.

Recent data reveal rhythmicity in episodic memory 
behavior (Biba et al., 2024; Ter Wal et al., 2021), with 
findings interpreted in the context of a prominent 
model of hippocampal theta in which opposite phases 
of hippocampal theta are posited to be differentially 
optimal for encoding versus retrieval—the separate 
phases of encoding and retrieval (SPEAR) model (Fig. 
2a; Hasselmo et al., 2002). From the SPEAR perspective, 
the relative influences of the monosynaptic and trisyn-
aptic pathways of the hippocampus are thought to dif-
fer with phase, prioritizing either stimulus/event input 
from the entorhinal cortex in support of encoding or 
internally generated mnemonic predictions from hip-
pocampal subfield CA3 for retrieval, respectively. The 
strength of inputs along the trisynaptic pathway (e.g., 
from the dentate gyrus and entorhinal cortex to CA3) 

is additionally thought to differ with theta phase, driv-
ing CA3 to either retrieve or encode information (Kunec 
et al., 2005). The theta-phase dependency of encoding 
and retrieval computations may not only account for 
rhythmicity in memory behavior (Biba et al., 2024; Ter 
Wal et al., 2021) but also relate to retrieval-driven versus 
novelty-driven eye movements (Kragel et al., 2020).

Importantly, although the hippocampal theta phase 
(Saint Amour di Chanaz et al., 2023) has been linked 
with encoding and retrieval success, direct evidence for 
the coupling of specific hippocampal phases with 
behavioral rhythmicity remains limited. Furthermore, 
there may exist encoding and retrieval modes with 
effects that persist over seconds (Duncan et al., 2012); 
how these prolonged mnemonic modes relate to sub-
second theta-specific oscillations in hippocampal com-
putations and behavior remains an open question. 
Given the nascent literature on rhythms of memory, 
such behavioral oscillations could be linked, at least 
in part, to rhythms in attention (Biba et  al., 2024). 
Moreover, neural substrates of behavioral rhythms in 
memory may reside in the hippocampus and/or in 
frontoparietal attention networks.

Separately, an extensive amount of research demon-
strates that theta power is linked to episodic memory 
functions (Hsieh & Ranganath, 2014; Herweg et  al., 
2020), with scalp EEG showing increases in theta power 
during successful encoding and retrieval (Fig. 2b) and 
intracranial EEG data from the human hippocampus 
and neocortex showing similar effects during associa-
tive recall (Herweg et  al., 2020; Maoz et  al., 2023). 
Recent findings also document how the hippocampus 
and neocortex interact during encoding and retrieval 
(Fernandez et  al., 2024; Theves et  al., 2024; Zhao & 
Kuhl, 2024), which invites questions regarding the 
impact of hippocampal theta oscillations on cortical 
representations (Hanslmayr et al., 2024). Emerging evi-
dence from scalp EEG suggests that the strength of 
encoded and retrieved event content in the neocortex, 
read out by machine-learning pattern-classification 
methods (Table 1), oscillates at a theta frequency (Fig. 
2c; Kerrén et al., 2018). Notably, peaks in cortical rep-
resentational strength during learning and remembering 
may couple with opposing phases of a virtual hippo-
campal theta, although the relationship between scalp-
recorded theta and hippocampal theta remains unclear 
(Herweg et al., 2020; Mitchell et al., 2008).

Given the uncertainty about whether oscillations of 
event-content representations in the neocortex relate to 
hippocampal theta, future research should explore 
whether fluctuations in the strength of to-be-encoded and 
retrieved cortical representations have a nonhippocampal 
source and are governed instead by the phase of theta 
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oscillations that support attentional sampling (Busch & 
VanRullen, 2010; Fiebelkorn & Kastner, 2019). More-
over, future research can extend recent behavioral find-
ings that attentional and mnemonic processes fluctuate 
at similar frequencies to examine their possible con-
nections through an underlying neural rhythmicity. 
Recent technological advances permitting closed-loop 
intracranial EEG recordings during ambulatory naviga-
tion (Maoz et al., 2023) could be leveraged to address 
these open questions more directly (for more informa-
tion on closed-loop approaches, see Testing the Causal-
ity of Attention for Remembering section).

Memory Precision in Aging

Aging is accompanied by changes in specific cognitive 
faculties, including attention and episodic memory 
(e.g., Fortenbaugh et  al., 2015; Hedden & Gabrieli, 

2004). Representational quality—including event-
based feature representation (Table 1) during the 
encoding of experiences and reinstatement of previ-
ously encoded representations during retrieval—is cen-
tral in many theoretical accounts and empirical 
investigations of age-related changes in episodic mem-
ory (e.g., Stark et al., 2019; Theves et al., 2024; Trelle 
et al., 2020). Fortunately, advances in paradigm design 
and analytics promise increased sensitivity in the detec-
tion of subtle memory changes. A prominent example 
is the measurement of memory precision, which was 
originally developed to examine representational qual-
ity and quantity in working memory (e.g., Ma et  al., 
2014). Unlike classic memory tasks, in which partici-
pants indicate their memory by selecting from among 
a few discrete categorical decisions, assays of memory 
precision task participants with indicating their memory 
for fine-grained details using more continuous response 
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Fig. 2.  Three types of modeled or observed neural theta oscillations. The schematic shows (a) the SPEAR model of hippocampal theta, 
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options. For instance, during learning, participants 
might encounter common objects, each presented in a 
random color sampled from 360 possible colors; then, 
during retrieval, the precision of memory for an object’s 
study-phase color is probed by having participants indi-
cate their memory by selecting a color using a 
360-degree color wheel (Fig. 3; e.g., Sutterer & Awh, 
2016). This approach can be generalized to probe mem-
ory precision for any feature that can be mapped onto 
an approximately perceptually uniform space, such as 
location, orientation, or shape (Cooper & Ritchey, 2019; 
Li et al., 2020; Richter et al., 2016).

Research on age-related episodic memory decline 
demonstrates the utility and promise of probing mem-
ory precision (e.g., Korkki et  al., 2020; Nilakantan 
et al., 2018). For example, Korkki et al. (2020) tasked 
young and older participants to encode the location, 
color, and orientation of objects and probed subse-
quent memory precision for each of the three fea-
tures. They fit the retrieval data with a mixture model 
(Zhang & Luck, 2008), which some posit separates 
guesses from memory judgments varying in precision, 
and found that the precision estimate declined con-
sistently with age across all three feature dimensions. 

Richter et al. (2016) leveraged a memory precision 
paradigm and mixture modeling to demonstrate that 
different expressions of episodic memory map onto 
distinct neural substrates, with functional MRI activity 
in the hippocampus showing a categorical effect 
(being more active when any memory information 
was retrieved regardless of its precision) and activity 
in the angular gyrus showing a continuous effect 
(scaling with the precision of retrieved mnemonic 
features). Korkki et al. (2023) replicated this relation-
ship between episodic memory precision and angular 
gyrus activity and further observed that variability in 
precision may relate to neocortical structural vari-
ability (Table 1).

Notably, in Souza et al. (2024), older adults benefited 
more than young adults from a retro-cue3 directing their 
attention toward a particular to-be-remembered stimu-
lus out of several others just prior to being probed 
about their memory for the stimulus (i.e., memory pre-
cision for the stimulus’ color). By contrast, when no 
retro-cue was provided (i.e., when participants did not 
know which of the several stimuli would be tested in 
the seconds after the initial stimulus array presentation), 
young adults outperformed older adults in terms of 
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Fig. 3.  Example episodic memory precision task. Participants encounter (a, top) objects shaded in one of 360 possible colors. 
Participants then encounter (a, bottom) a grayscale version of previously encountered objects and indicate their memory for the 
color of the object by clicking the corresponding color on the wheel. Illustrative distributions of (b) memory precision errors 
are mapped from the circular space to the linear space of −180 to +180. Here, young adults (blue dashed line) are schematized 
to demonstrate higher memory precision than older adults (solid red line). Created in BioRender (Schwartz, 2025b). https://
BioRender.com/n00n200.

https://BioRender.com/n00n200
https://BioRender.com/n00n200


Current Directions in Psychological Science XX(X)	 7

memory precision. Although the delay between encod-
ing and retrieval in Souza et al. (2024) was much shorter 
than that in Korkki et al. (2023), given that multiple 
stimuli were presented within and across memory 
encoding trials prior to the retrieval trials in Korkki 
et al. (2023), this pattern of results raises the possibility 
that age-related declines in memory precision may be 
attributed, in part, to age-related differences in selective 
attention.

One theory-informing application of memory preci-
sion paradigms could be to shed new light on neural 
dedifferentiation and its links to attention in aging (e.g., 
Koen et al., 2020; Park & McDonough, 2013). Neural 
dedifferentiation is a prominent age-related change in 
the neural underpinnings of perception and episodic 
memory. It consists of a reduction in the selectivity of 
cortical activity with age, is posited to decrease the 
fidelity (or precision) of memory representations, and 
may, in part, result from declines in attention. Indeed, 
recent findings indicate that, in cognitively unimpaired 
older adults, age-related declines in memory are 
explained, in part, by two independent pathways: a 
decline in memory-related encoding activity in the dor-
sal attention network that in turn accounts for declines 
in neural selectivity, and the presence of preclinical 
Alzheimer’s disease pathology (as evidenced by plasma 
pTau181) that separately accounts for declines in neural 
selectivity (Sheng et al., 2024). A test of this account of 
dedifferentiation could come from integrating memory 
precision assays with measures of neural representa-
tional precision and readouts of attention (e.g., from 
pupillometry and/or EEG); doing so promises to deepen 
understanding of the multiple drivers of neurocognitive 
aging.

Testing the Causality of Attention for 
Remembering

Historically, attempts to investigate the causal relation-
ship between attention and memory have relied on 
manipulations in which a participant’s attention is 
divided across a primary and secondary task (e.g.,  
Baddeley et al., 1984; Craik et al., 1996; Murdock, 1965) 
or in which two feature dimensions—one relevant and 
one irrelevant on any given trial—compete for attention 
(e.g., Uncapher & Rugg, 2009). This experimental 
approach has yielded a rich literature revealing worse 
memory performance when attention is divided versus 
when fully focused on memory-relevant information.

In this article, much of our discussion has centered 
on correlational observations of attention-memory 
interactions. Such findings, although informative, do 
not permit causal inferences. Over the last few decades, 

advances in computing and closed-loop interfaces 
(Table 1) have enabled a complementary approach to 
bridging this gap (Fig. 4a; e.g., deBettencourt et  al., 
2015, 2018, 2019; Keene et al., 2022; Salari & Rose, 2016; 
Yoo et  al., 2012). To illustrate, deBettencourt et al. 
(2019) examined how attentional states impact working 
memory using a real-time adaptive approach. Through 
moment-to-moment sampling of response time on a 
sustained attention task, deBettencourt et al. (2019) 
tracked intrinsic fluctuations of attention, detecting 
when a participant was in exceptionally high- or low-
attention states. In turn, they delivered working mem-
ory probes during these optimal and suboptimal 
attention states4 and observed superior performance in 
the former. Notably, this closed-loop approach gener-
ally affords greater control over factors of interest along 
with increased power.

Adaptive experimental approaches can be extended 
to causal investigations of episodic memory-attention 
interactions (Fig. 4a). Using a real-time framework, one 
(or multiple concurrent) psychophysiological readouts 
of fluctuations in sustained attention (e.g., via pupil-
lometry; see Keene et  al., 2022) could control either 
the temporal delivery of events to optimal versus sub-
optimal moments or trigger salient reorienting cues to 
reengage attention during momentary lapses just prior 
to engaging in the act of encoding or retrieval (Figs. 4b 
and 4c). However, despite the advantages afforded by 
closed-loop approaches for more precise causal inves-
tigations, unforeseen challenges may arise when design-
ing such experiments. When developing a closed-loop 
pipeline, researchers should adhere to signal processing 
best practices/limitations, rigorous testing of computa-
tional/hardware integration and implementation, and 
A/B testing the efficacy of intervention parameters 
before deploying an experiment at large. That said, 
these tradeoffs permit an innovative and powerful 
approach for causal investigations of attention’s impacts 
on subsequent cognitive behavior, advancing under-
standing of the multiple processes that collectively 
influence whether and how we learn and remember 
experiences.

Concluding Remarks

This article highlighted some recent advances in 
understanding the neurocognitive mechanisms of 
attention, episodic memory, and their interactions. We 
expect that future research and further methodological 
developments will continue to drive theoretical prog-
ress, enabling researchers to tackle the open questions 
raised herein and generate increasingly precise 
accounts of the systems and mechanisms that enable 
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https://BioRender.com/k46d189.  
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humans to learn and remember from life events, as 
well as how mnemonic function changes in aging and 
disease.
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Notes

1. During the memory encoding (study) phase, participants 
encountered images of everyday objects that were physically 
small (e.g., fixed at 150 × 150 pixels) or large (e.g., fixed at 
450 × 450 pixels) on the screen on any given trial. Some of 
the objects were normatively more pleasant than others. On 
half of the study trials, participants were instructed to decide 
whether the upcoming object would be physically small or 
large; on the other half of trials, participants were instructed 
to indicate whether the upcoming object would be pleasant 
or unpleasant.
2. An alternative approach to measuring the strength of goal 
representations is to use pattern-classification methods to quan-
tify the strength of goal representation using neural-activity pat-
terns within the frontoparietal control network (e.g., Waskom 
et al., 2014).
3. A retro-cue is a cue that appears after (hence, “retro”) a num-
ber of stimuli have been presented, indicating which stimulus 
the participant will be tested on.
4. Note that these attentional states fluctuate on a longer tim-
escale (seconds) than the theta/alpha rhythms (tens or hun-
dreds of milliseconds) referenced in the Rhythmic Nature of 
Attention and Memory section; the difference in temporal fre-
quency of these states underscores the possibility of nested 
attentional dynamics operating concurrently to influence mem-
ory and other cognitive behaviors.
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