
EEB 177 Lecture 7

Michael Alfaro

EEB 177 Lecture 7

Topics

I Passing arguments to shell scripts
I Python

Preliminaries

I Start nano: $ nano and save the file
“classwork-Thursday-1-30.txt” to your class-assignments
directory

I push this to your remote repository
I you can write answers to today’s exercises in this file.

Your Previous Script
#!/bin/bash
ls -la
echo "Above are the directory listings for this folder"
pwd
echo "right now it is :"
date

Passing Arguments
I You can pass arguments to make your programs more

generalizable
I For example, what you if you had many data files that you

wanted to extract the body mass from?
I Your input in the terminal could look something like this:

$ ExtractBodyM.sh ~/path/to/your/file/here

Example
I You can access the contents of the arguments passed from the

command line using the $ character
I For example, $1, $2, $3, etc.
I Let’s revisit the dir.sh file, but let you do it for any provided

directory
I In your code, save the contents of the $n to a variable name

like this:
#!/bin/bash
INPUTDIR = $1
ls -la $INPUTDIR
echo "Above are the directory listings for this folder"
pwd
echo "right now it is :
date

Now, edit your ExtractBodyM.sh script. . .
I to allow for any input csv file,
I and to allow you to name the file that you want to save as

output (instead of BodyM.csv)
I

Hint: you’ll need to store the values for two inputs

Solution
#!/bin/bash
INPUTFILE = $1
OUTPUTFILE = $2
tail -n +2 $INPUTFILE | cut -d ’;’
-f 2-6 | tr -s ’;’ ’ ’ | sort -r -n -k 6 > $OUTPUTFILE

In the terminal you could now type something like this:

$ ExtractBodyM.sh ../data/Pacifici2013_data.csv BodyM.csv

ˆ or whatever other files you could have to pass as input

I remember, in the case of this specific program, we are
expecting our input files to have a certain column layout to
extract the rows

I this would therefore be useful in a situation where we had
many data files all in the same format and layout, but with
different data points

Programming languages
I There are over 2000
I There is no perfect language for all tasks
I You are already learning several: regular expressions, python, R
I This class does not cover fast, compiled languages like C.

Useful for heavy computational tasks

Getting started with python
I Python should already be installed on your VM

$ ipython
IPython 2.2.0 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
In [1]: import scipy
to exit ipython: CTRL-D CTRL-D to exit

IPython interactive mode
You can use python and IPython from the command prompt.
In [1]: 2 + 2
Out[1]: 4

In [6]: 2 > 3
Out[6]: False

In [11]: "I'm fine, " + "thank you"
Out[11]: "I'm fine, thank you"
try it out. . . .

Python operators
+ Addition
- Subtraction
* Multiplication
/ Division
** Power
% Modulo
// Integer division == Equals
!= Differs
> Greater
>= Greater or equal &, and Logical and |, or Logical or
!, not Logical not

Variables
You typically manipulate variables in programming languages.
In [12]: x = 5
In [13]: x
Out[13]: 5
In [14]: x + 3
Out[14]: 8
In [15]: y = 8
In [16]: x + y
Out[16]: 13
In [17]: x = "My string"
In [18]: x + " is now longer"
Out[18]: "My string is now longer"
In [19]: x + y
TypeError: cannot concatenate "str" and "int" objects

modulus

The modulus operator % returns the remainder of an integer division

In [17]: 15 % 7
Out[17]: 1
In [20]: 13 % 5
Out[20]: 3

dynamic typing

Programming languages like C and Fortran are statically typed,
meaning that you need to define the type of a variable when you
create it. Python does not require this and automatically determines
type. You can see the type of a variable with the type function.

In [22]: xx = 2

In [23]: type(xx)
Out[23]: int

In [24]: xx = "two"

In [25]: type (xx)
Out[25]: str

strings
Python is an excellent language for bioinformatics in part because it
provides many built-in functions for manipulating strings. You can
see these methods by typing the name of a string followed by a
period and then TAB.
In [27]: xx.
xx.capitalize xx.format xx.isupper xx.rindex xx.strip
xx.center xx.index xx.join xx.rjust xx.swapcase
xx.count xx.isalnum xx.ljust xx.rpartition xx.title

Remember you can get help on any function with help

In [4]: help(xx.center)
Help on built-in function center: [...]

here are some string functions
replace characters
In [5]: astring.replace("T", "U")
Out[5]: ’AUGCAUG’
position of first occurrence
In [6]: astring.find("C")
Out[6]: 3
count occurrences
In [7]: astring.count("G")
Out[7]: 2
In [8]: newstring = " Mus musculus "
split the string (using spaces by default)
In [9]: newstring.split()
Out[9]: [’ Mus’, ’musculus ’]
specify how to split
In [10]: newstring.split("u")
Out10]: [’ M’, ’s m’, ’sc’, ’l’, ’s ’]
remove leading and trailing white space
In [11]: newstring.strip()
Out[11]: ’Mus musculus’

In [1]: astring = "ATGCATG"
return the length of the string
In [2]: len(astring)
Out[2]: 7

You can also use string functions by creating the string on the fly
with quotation marks and calling method from the new string.

make upper case
In [12]: "atgc".upper()
Out[12]: ’ATGC’
make lower case
In[13]: "TGCA".lower()
Out[13]: ’tgca’

concatenating strings with + and join

In [14]: genus = "Rattus"
In [14]: species =
"norvegicus"
In [16]: genus + " " + species
Out[16]: ’Rattus norvegicus’

join requires a list of strings as input;
#more on lists below
In [17]: human = ["Homo", "sapiens" , "sapiens"]
In [18]: " ".join(human)
Out[18]: ’Homo sapiens sapiens’
specify any symbol as delimiter

String challenge
Do the following

1. Initialize the string s = “WHEN on board H.M.S. Beagle, as
naturalist”.

2. Apply a string method to count the number of occurrences of
the character b.

3. Modify the command such that it counts both lower and upper
case bs.

4. Replace WHEN with When.
Collections
Python has variables that are collections of other objects. lists are
collections of ordered values and are defined by [].
Anything starting with # is a comment
In [26]: MyList = [3,2.44,"green",True]
In [27]: MyList[1]
Out[27]: 2.44
In [28]: MyList[0] # NOTE: FIRST ELEMENT -> 0
Out[28]: 3
In [29]: MyList[3]
Out[29]: True
In [30]: MyList[4]
IndexError: list index out of range
In [31]: MyList[2] = "blue"
In [32]: MyList
Out[32]: [3, 2.44, "blue", True]
note that indexing in python starts at 0.

append, sort, and count are methods that work on lists
In [33]: MyList[0] = "blue"
In [34]: MyList
Out[34]: ["blue", 2.44, "blue", True]
In [35]: MyList.append("a new item")
In [36]: MyList
Out[36]: ["blue", 2.44, "blue", True, "a new item"]
In [37]: MyList.sort()
In [38]: MyList
Out[38]: [True, 2.44, "a new item", "blue", "blue"]
In [39]: MyList.count("blue")
Out[39]: 2

More list operations
Try these
In [71]: apes = ["Homo sapiens", "Pan troglodytes",
"Gorilla gorilla"]
In [72]: #how long is list?
In [73]: len(apes)
Out[73]: 3
In [74]: #index elements with brackets
In [75]: apes[1] # what element will this be
Out[75]: 'Pan troglodytes'
In [76]: apes.reverse() #lists are ordered
In [77]: apes[0]
Out[77]: 'Gorilla gorilla'
#if you know the element
but do not know position, use index
In [78]: apes.index("Homo sapiens")
Out[78]: 2
#get the last element of any list with [-1]
In [79]: apes[-1]
Out[79]: 'Homo sapiens'

copy
In[18]: my_list = [’blue’, 2.44, ’green’, True, 25]
In [19]: new_list = my_list.copy()
In [19]:new_list
Out[20]: [’blue’, 2.44, ’green’, True, 25]

clear
removes all elements from a list
In [21]: my_list.clear()
In [22]: my_list
Out[22]: []

pop
remove the last element of the list and return it.
In [23]: seq = list("TKAAVVNFT")
In [26]: seq2 = seq.pop()
In [27]: seq
Out[27]: [’T’, ’K’, ’A’, ’A’, ’V’, ’V’, ’N’, ’F’]
In [28]: seq2
Out[28]: ’T’

Subsetting lists
You can make a new list by telling python the elements of the
original list to include
ranks = ["kingdom","phylum", "class", "order", "family"]
In [81]: ranks
Out[81]: ['kingdom', 'phylum', 'class', 'order', 'family']
lower_ranks = ranks[2:5]
In [83]: lower_ranks
Out[83]: ['class', 'order', 'family']
Note how python indexing works:numbers are inclusive at the start
and exclusive at the end.

Appending to lists
Try this
apes = ["Homo sapiens", "Pan troglodytes",
"Gorilla gorilla"]
print("There are " + str(len(apes)) + " apes")
apes.append("Pan paniscus")
print("Now there are " + str(len(apes)) + " apes")
append() changes the variable in place!

+ and extend
Try this
apes = ["Homo sapiens", "Pan troglodytes", "Gorilla gorilla"]
monkeys = ["Paio ursinus", "Macaca mulatta"]
primates = apes + monkeys
print(str(len(apes)) + " apes")
print(str(len(monkeys)) + " monkeys")
print(str(len(primates)) + " primates")

platyrrhines = ["Cebus", "Sapajus", "Aotus"]
monkeys.extend(platyrrhines)
print monkeys
['Papio ursinus', 'Macaca mulatta', 'Cebus', 'Sapajus', 'Aotus']
Dictionaries are collections of key-value pairs. Very useful for
data without a natural order. Defined by {}.
In [1]: GenomeSize={"Homo sapiens": 3200.0,

"Escherichia coli": 4.6, "Arabidopsis thaliana": 157.0}
In [2]: GenomeSize
Out[2]:
{"Arabidopsis thaliana": 157.0,
"Escherichia coli": 4.6,
"Homo sapiens": 3200.0}

You can access the value of a dictionary by suppling the key for that
pair.
In [3]: GenomeSize["Arabidopsis thaliana"]
Out[3]: 157.0
In [4]: GenomeSize["Saccharomyces cerevisiae"] = 12.1
In [5]: GenomeSize
Out[5]:
{"Arabidopsis thaliana": 157.0,
"Escherichia coli": 4.6,
"Homo sapiens": 3200.0,
"Saccharomyces cerevisiae": 12.1}

Adding keys and changing values in dictionaries
ALREADY IN DICTIONARY!
In [6]: GenomeSize["Escherichia coli"] = 4.6
In [7]: GenomeSize
Out[7]:
{"Arabidopsis thaliana": 157.0,
"Escherichia coli": 4.6,
"Homo sapiens": 3200.0,
"Saccharomyces cerevisiae": 12.1}

In [8]: GenomeSize["Homo sapiens"] = 3201.1
In [9]: GenomeSize
Out[9]:
{"Arabidopsis thaliana": 157.0,
"Escherichia coli": 4.6,
"Homo sapiens": 3201.1,
"Saccharomyces cerevisiae": 12.1}

copy

In [13]: GS = GenomeSize.copy()
In [14]: GS
Out[14]:
{’Arabidopsis thaliana’: 157.0, ’Escherichia coli’: 4.6,
’Homo sapiens’: 3201.1, ’Saccharomyces cerevisiae’: 12.1}

clear

removes all elements
In [15]: GenomeSize.clear()
In [16]: GenomeSize
Out[16]: {}

get

gets a value from key
In [67]: GenomeSize.get("Homo sapiens")
Out[67]: 3200.0

this function is very useful for initializing the dictionary, or to return
a special value when the key is not present.

In [68]: GenomeSize.get("Mus musculus", 10)
Out[68]: 10

items

returns key value pairs. Can be used to print contents of a
dictionary.
for k,v in GS.items():

print(k, v)
('Homo sapiens', 3200.0)
('Escherichia coli', 4.6)
('Arabidopsis thaliana', 157.0)

keys, values

These functions return lists of the keys or values of the dictionary.
In [72]: GS.keys()

Out[72]: ['Homo sapiens', 'Escherichia coli', 'Arabidopsis thaliana']

In [74]: GS.values()

Out[74]: [3200.0, 4.6, 157.0]

Creating dictionaries
You will often create a dictionary and then populate it. Try this!
enzymes = {}
enzymes['EcoRI'] = r'GAATTC' # r before the string
#tells python to automatically escape every character
enzymes['AvaII'] = r'GG(A|T)CC'
enzymes['BisI'] = r'GC[ATGC]GC'
enzymes.keys()
enzymes.values()
You can use zip() to turn two lists into a dictionary
keys = ('name', 'age', 'food')
values = ('Monty', 42, 'spam')
zip(keys, values) #makes a list of tuples
my_new_dict = dict(zip(keys, values))
my_new_dict
tuples contain sequences that are immutable and are defined
by ().
In [12]: FoodWeb=[("a","b"),("a","c"),("b","c"),("c","c")]
In [13]: FoodWeb[0]
Out[13]: ("a", "b")
In [14]: FoodWeb[0][0]
Out[14]: "a"
Note that tuples are "immutable"
In [15]: FoodWeb[0][0] = "bbb"
TypeError: "tuple" object does not support item assignment
In [16]: FoodWeb[0] = ("bbb","ccc")
In [17]: FoodWeb[0]
Out[17]: ("bbb", "ccc")
Use tuples when order matters.

sets are lists without duplicate elements
In [1]: a = [5,6,7,7,7,8,9,9]
In [2]: b = set(a)
In [3]: b
Out[3]: set([8, 9, 5, 6, 7])
In [4]: c=set([3,4,5,6])
In [5]: b & c
Out[5]: set([5, 6])
In [6]: b | c
Out[6]: set([3, 4, 5, 6, 7, 8, 9])
In [7]: b ^ c
Out[7]: set([3, 4, 7, 8, 9])
The operations are: Union | (or); Intersection & (and); symmetric
difference (elements in set b but not in c and in c but not in b), ^;
and so forth.

You can concatenate similar collection elements with +
In [1]: a = [1, 2, 3]
In [2]: b = [4, 5]
In [3]: a + b
Out[3]: [1, 2, 3, 4, 5]
In [4]: a = (1, 2)
In [5]: b = (4, 6)
In [6]: a + b
Out[6]: (1, 2, 4, 6)
In [7]: z1 = {1: "AAA", 2: "BBB"}
In [8]: z2 = {3: "CCC", 4: "DDD"}
In [9]: z1 + z2

--
TypeError Traceback (most recent call last)
----> 1 z1 + z2

TypeError: unsupported operand type(s) for +: "dict" and "dict"

Challenge
Do this:
I Define a list a = [1, 1, 2, 3, 5, 8].
I Extract [5, 8] in two different ways.
I Add the element 13 at the end of the list.
I Reverse the list.
I Define a dictionary m = {“a”: “.-”, “b”: “-. . . -”, “c”: ’-.-.’}.
I Add the element “d”: “-..”.
I Update the value “b”: “-. . . ”.

Python programming best practices
We will try to instill as many standard practices as we can at the
beginning.
I Wrap lines so that they are less than 80 characters long. You

can use parentheses () or signal that the line continues using a
“backslash” .

I Use 4 spaces for indentation, no tabs.
I Separate functions using a blank line.
I When possible, write comments on separate lines.
I Use docstrings to document how to use the code, and

comments to explain why and how the code works.

	Hint: you'll need to store the values for two inputs

