EEB 177 Lecture 6

Michael Alfaro

EEB 177 Lecture 6

Topics

» Permissions
» Scripts
> Python

Office Hours

Tuesday 1:00-2:00
Terasaki 2149

Preliminaries

» Start nano: $ nano and save the file
“classwork-Tuesday-1-28.txt" to your class-assignments
directory

P push this to your remote repository

P> you can write answers to today's exercises in this file.

Writing a shell script

Lets illustrate some ideas about paths, scripts, and permissions by
writing a simple shell script. You are going to write a program in
your text editor that will execute a series of shell commands that
you have already learned.

open up nano and type the following lines:

open nano in your class-assignments folder and save the
following file as dir.sh:

#! /bin/bash

1s -la

echo "Above are the directory listings for this folder"
pwd

echo "right now it is :"

date

save this file as dir.sh

Paths

there are two standard locations for programs— /usr/bin and /bin
use 1s to see what is in them

The shell searches these directories (and others that have been
addded to the path) whenever you type a command.

Type echo $PATH to see your current path.

which will tell you the directory to a command. Try which cat

Creating a scripts directory and adding it to the path

we want a single working copy of each program on our machines so
we need to make sure the shell searches for our programs. . ..

>
>
| 2
>

>

go to your home directory

create a directory called scripts

to add the scripts directory to the path, open the .profile
file in nano

add this line (exactly) export

PATH="$PATH: $HOME/scripts"

exit and save

Now we have created a program we would like to run and created a
path to the scripts directory. What else do we need to do?

hint: where is dir.sh right now?

hint: what permissions do we need to execute a script?

the shebang (#!)

#! is called the shebang—it means that all following contents of
script will be sent to the program following the shebang

#! /bin/bash sends it all to bash

remember,new scripts are not executable w/o changing permissions

checking permissions

» cd ~/scripts
» check permission with Is -
» add permission to execute with chmod u-+x

try running your program from different directories. Does it work?
Why?

exercise

Add your scripts directory to your remote repository. You will need

to
> git init in your scripts directory
» add your script
> commit your script
P create a remote repo on github
» copy and paste the command lines from the remote repo after

you create it.

exercise

Lets make a shell script of the body mass extraction exercise we did
Tuesday

go to your scripts directory and create this file

touch ExtractBodyM.sh

edit your script

Use nano to open and edit your script
nano ExtractBodyM.sh &

the “&" character opens the script in the background so yu can
keep using the terminal

Now add the pipeline to the script

tail -n +2 ../data/Pacifici2013_data.csv | cut -4 ’;’
-f 2-6 | tr -s ’;’ ’> ’ | sort -r -n -k 6 > BodyM.csv

Comments

It is a good idea to add comments to your script so that you know
what the purpose of the code is when you return to it. Use the #
character for comments.

Take a csv file delimited by ';" # Remove the header

Make space separated

Sort according to the 6th (numeric) column in descending order
Redirect to a file

tail -n +2 ../data/Pacifici2013_data.csv | cut -d ’;’
-f 26 | tr -s ;> ’> ’ | sort -r -n -k 6 > BodyM.csv

Running the script

You can run the script using the bash command

bash ExtractBodyM.sh

How could you make this script run automatically from any prompt
without typing bash?

solution
Add the shebang line and place the script in your scripts directory
#! /bin/bash
Take a csv file delimited by ';" # Remove the header
Make space separated
Sort according to the 6th (numeric) column in descending order
Redirect to a file

tail -n +2 ../data/Pacifici2013 data.csv | cut -d ’;’
-f 2-6 | tr -s ’;’ > ? | sort -r -n -k 6 > BodyM.csv

you will need to change permissions to execute the script!
Programming languages

» There are over 2000

» There is no perfect language for all tasks

» You are already learning several: regular expressions, python, R
» This class does not cover fast, compiled languages like C.

dynamic typing
Programming languages like C and Fortran are statically typed,
meaning that you need to define the type of a variable when you
create it. Python does not require this and automatically determines
type. You can see the type of a variable with the type function.

In [22]: xx = 2

In [23]: type(xx)
Out[23]: int

In [24]: xx = "two"

In [25]: type (xx)

Out [25]: str

strings

Python is an excellent language for bioinformatics in part because it
provides many built-in functions for manipulating strings. You can
see these methods by typing the name of a string followed by a

In [1]: astring = "ATGCATG"
return the length of the string
In [2]: len(astring)
Out[2]: 7

You can also use string functions by creating the string on the fly
with quotation marks and calling method from the new string.

make upper case

In [12]: "atgc".upper()
Out[12]: ’ATGC’

make lower case
In[13]: "TGCA".lower()
Out[13]: ’tgca’

concatenating strings with + and join

In [14]: genus = "Rattus"
In [14]: species
"norvegicus"

In [16]: genus + " " + species
Outl[16]: ’Rattus norvegicus’

String challenge
Do the following

1. Initialize the string s = “WHEN on board H.M.S. Beagle, as
naturalist”.

2. Apply a string method to count the number of occurrences of
the character b.

3. Modify the command such that it counts both lower and upper
case bs.

4. Replace WHEN with When.

Collections

Python has variables that are collections of other objects. lists are
collections of ordered values and are defined by [].

Anything starting with # is a comment

In [26]: MyList = [3,2.44,"green",True]

In [27]: MyList[1]

Out[27]: 2.44

In [28]: MyList[0] # NOTE: FIRST ELEMENT -> 0

