
EEB 177 Lecture 6

Michael Alfaro

EEB 177 Lecture 6

Topics

I Permissions
I Scripts
I Python

Office Hours

Tuesday 1:00-2:00

Terasaki 2149

Preliminaries

I Start nano: $ nano and save the file
“classwork-Tuesday-1-28.txt” to your class-assignments
directory

I push this to your remote repository
I you can write answers to today’s exercises in this file.

Writing a shell script

Lets illustrate some ideas about paths, scripts, and permissions by
writing a simple shell script. You are going to write a program in
your text editor that will execute a series of shell commands that
you have already learned.

open up nano and type the following lines:

open nano in your class-assignments folder and save the
following file as dir.sh:

#! /bin/bash
ls -la
echo "Above are the directory listings for this folder"
pwd
echo "right now it is :"
date

save this file as dir.sh

Paths

there are two standard locations for programs– /usr/bin and /bin

use ls to see what is in them

The shell searches these directories (and others that have been
addded to the path) whenever you type a command.

Type echo $PATH to see your current path.

which will tell you the directory to a command. Try which cat

Creating a scripts directory and adding it to the path

we want a single working copy of each program on our machines so
we need to make sure the shell searches for our programs. . . .

I go to your home directory
I create a directory called scripts
I to add the scripts directory to the path, open the .profile

file in nano
I add this line (exactly) export

PATH="$PATH:$HOME/scripts"
I exit and save

Now we have created a program we would like to run and created a
path to the scripts directory. What else do we need to do?

hint: where is dir.sh right now?

hint: what permissions do we need to execute a script?

the shebang (#!)

#! is called the shebang–it means that all following contents of
script will be sent to the program following the shebang

#! /bin/bash sends it all to bash

remember,new scripts are not executable w/o changing permissions

checking permissions

I cd ~/scripts
I check permission with ls -l
I add permission to execute with chmod u+x

try running your program from different directories. Does it work?
Why?

exercise

Add your scripts directory to your remote repository. You will need
to

I git init in your scripts directory
I add your script
I commit your script
I create a remote repo on github
I copy and paste the command lines from the remote repo after

you create it.

exercise

Lets make a shell script of the body mass extraction exercise we did
Tuesday

go to your scripts directory and create this file

touch ExtractBodyM.sh

edit your script

Use nano to open and edit your script

nano ExtractBodyM.sh &

the “&” character opens the script in the background so yu can
keep using the terminal

Now add the pipeline to the script

tail -n +2 ../data/Pacifici2013_data.csv | cut -d ’;’
-f 2-6 | tr -s ’;’ ’ ’ | sort -r -n -k 6 > BodyM.csv

Comments

It is a good idea to add comments to your script so that you know
what the purpose of the code is when you return to it. Use the #
character for comments.

Take a csv file delimited by ’;’ # Remove the header

Make space separated

Sort according to the 6th (numeric) column in descending order

Redirect to a file

tail -n +2 ../data/Pacifici2013_data.csv | cut -d ’;’
-f 2-6 | tr -s ’;’ ’ ’ | sort -r -n -k 6 > BodyM.csv

Running the script

You can run the script using the bash command

bash ExtractBodyM.sh

How could you make this script run automatically from any prompt
without typing bash?

solution
Add the shebang line and place the script in your scripts directory

#! /bin/bash

Take a csv file delimited by ’;’ # Remove the header

Make space separated

Sort according to the 6th (numeric) column in descending order

Redirect to a file

tail -n +2 ../data/Pacifici2013_data.csv | cut -d ’;’
-f 2-6 | tr -s ’;’ ’ ’ | sort -r -n -k 6 > BodyM.csv

you will need to change permissions to execute the script!
Programming languages
I There are over 2000
I There is no perfect language for all tasks
I You are already learning several: regular expressions, python, R
I This class does not cover fast, compiled languages like C.

Useful for heavy computational tasks

Why Python?
I easy to teach
I readable
I powerful string manipulation, web scraping, and other

capabilities
I helps enforce good programming practices

Getting started with python
I Python should already be installed on your VM

$ ipython
IPython 2.2.0 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
In [1]: import scipy
to exit ipython: CTRL-D CTRL-D to exit

IPython interactive mode
You can use python and IPython from the command prompt.
In [1]: 2 + 2
Out[1]: 4

In [6]: 2 > 3
Out[6]: False

In [11]: "I'm fine, " + "thank you"
Out[11]: "I'm fine, thank you"
try it out. . . .

Python operators
+ Addition
- Subtraction
* Multiplication
/ Division
** Power
% Modulo
// Integer division == Equals
!= Differs
> Greater
>= Greater or equal &, and Logical and |, or Logical or
!, not Logical not

Variables
You typically manipulate variables in programming languages.
In [12]: x = 5
In [13]: x
Out[13]: 5
In [14]: x + 3
Out[14]: 8
In [15]: y = 8
In [16]: x + y
Out[16]: 13
In [17]: x = "My string"
In [18]: x + " is now longer"
Out[18]: "My string is now longer"
In [19]: x + y
TypeError: cannot concatenate "str" and "int" objects
Python recognizes variable types and methods for converting
among them
In [20]: x
Out[20]: "My string"
In [21]: y
Out[21]: 8
In [22]: x + str(y)
Out[22]: "My string8"
In [23]: z = "88"
In [24]: x + z
Out[24]: "My string88"
In [25]: y + int(z)
Out[25]: 96
The modulus operator % returns the remainder of an integer division
In [17]: 15 % 7
Out[17]: 1
In [20]: 13 % 5
Out[20]: 3

Variables
Variables allow you to assign a name to a value or object that is
stored in memory. Once you create the variable you can use it in
operations.
In [10]: x
Out[10]: "The cell grew"
In [11]: y # this is an integer Out[11]: 8
In [12]: x + " " + str(y) + " nm"
Out[12]: ’The cell grew 8 nm’
In [13]: z = "88" # this is a string In [14]: x + z
Out[15]: ’The cell grew88’
In [16]: y + int(z)
Out[16]: 96

dynamic typing
Programming languages like C and Fortran are statically typed,
meaning that you need to define the type of a variable when you
create it. Python does not require this and automatically determines
type. You can see the type of a variable with the type function.

In [22]: xx = 2

In [23]: type(xx)
Out[23]: int

In [24]: xx = "two"

In [25]: type (xx)
Out[25]: str
strings
Python is an excellent language for bioinformatics in part because it
provides many built-in functions for manipulating strings. You can
see these methods by typing the name of a string followed by a
period and then TAB.
In [27]: xx.
xx.capitalize xx.format xx.isupper xx.rindex xx.strip
xx.center xx.index xx.join xx.rjust xx.swapcase
xx.count xx.isalnum xx.ljust xx.rpartition xx.title
Remember you can get help on any function with help
In [4]: help(xx.center)

Help on built-in function center: [...]

here are some string functions
replace characters
In [5]: astring.replace("T", "U")
Out[5]: ’AUGCAUG’
position of first occurrence
In [6]: astring.find("C")
Out[6]: 3
count occurrences
In [7]: astring.count("G")
Out[7]: 2
In [8]: newstring = " Mus musculus "
split the string (using spaces by default)
In [9]: newstring.split()
Out[9]: [’ Mus’, ’musculus ’]
specify how to split
In [10]: newstring.split("u")
Out10]: [’ M’, ’s m’, ’sc’, ’l’, ’s ’]
remove leading and trailing white space
In [11]: newstring.strip()
Out[11]: ’Mus musculus’

In [1]: astring = "ATGCATG"
return the length of the string
In [2]: len(astring)
Out[2]: 7

You can also use string functions by creating the string on the fly
with quotation marks and calling method from the new string.

make upper case
In [12]: "atgc".upper()
Out[12]: ’ATGC’
make lower case
In[13]: "TGCA".lower()
Out[13]: ’tgca’

concatenating strings with + and join

In [14]: genus = "Rattus"
In [14]: species =
"norvegicus"
In [16]: genus + " " + species
Out[16]: ’Rattus norvegicus’

join requires a list of strings as input;
#more on lists below
In [17]: human = ["Homo", "sapiens" , "sapiens"]
In [18]: " ".join(human)
Out[18]: ’Homo sapiens sapiens’
specify any symbol as delimiter

String challenge
Do the following

1. Initialize the string s = “WHEN on board H.M.S. Beagle, as
naturalist”.

2. Apply a string method to count the number of occurrences of
the character b.

3. Modify the command such that it counts both lower and upper
case bs.

4. Replace WHEN with When.
Collections
Python has variables that are collections of other objects. lists are
collections of ordered values and are defined by [].
Anything starting with # is a comment
In [26]: MyList = [3,2.44,"green",True]
In [27]: MyList[1]
Out[27]: 2.44
In [28]: MyList[0] # NOTE: FIRST ELEMENT -> 0
Out[28]: 3
In [29]: MyList[3]
Out[29]: True
In [30]: MyList[4]
IndexError: list index out of range
In [31]: MyList[2] = "blue"
In [32]: MyList
Out[32]: [3, 2.44, "blue", True]
note that indexing in python starts at 0.

append, sort, and count are methods that work on lists
In [33]: MyList[0] = "blue"
In [34]: MyList
Out[34]: ["blue", 2.44, "blue", True]
In [35]: MyList.append("a new item")
In [36]: MyList
Out[36]: ["blue", 2.44, "blue", True, "a new item"]
In [37]: MyList.sort()
In [38]: MyList
Out[38]: [True, 2.44, "a new item", "blue", "blue"]
In [39]: MyList.count("blue")
Out[39]: 2

More list operations
Try these
In [71]: apes = ["Homo sapiens", "Pan troglodytes",
"Gorilla gorilla"]
In [72]: #how long is list?
In [73]: len(apes)
Out[73]: 3
In [74]: #index elements with brackets
In [75]: apes[1] # what element will this be
Out[75]: 'Pan troglodytes'
In [76]: apes.reverse() #lists are ordered
In [77]: apes[0]
Out[77]: 'Gorilla gorilla'
#if you know the element
but do not know position, use index
In [78]: apes.index("Homo sapiens")
Out[78]: 2
#get the last element of any list with [-1]
In [79]: apes[-1]
Out[79]: 'Homo sapiens'

copy
In[18]: my_list = [’blue’, 2.44, ’green’, True, 25]
In [19]: new_list = my_list.copy()
In [19]:new_list
Out[20]: [’blue’, 2.44, ’green’, True, 25]

clear
removes all elements from a list
In [21]: my_list.clear()
In [22]: my_list
Out[22]: []

pop
remove the last element of the list and return it.
In [23]: seq = list("TKAAVVNFT")
In [26]: seq2 = seq.pop()
In [27]: seq
Out[27]: [’T’, ’K’, ’A’, ’A’, ’V’, ’V’, ’N’, ’F’]
In [28]: seq2
Out[28]: ’T’

Subsetting lists
You can make a new list by telling python the elements of the
original list to include
ranks = ["kingdom","phylum", "class", "order", "family"]
In [81]: ranks
Out[81]: ['kingdom', 'phylum', 'class', 'order', 'family']
lower_ranks = ranks[2:5]
In [83]: lower_ranks
Out[83]: ['class', 'order', 'family']
Note how python indexing works:numbers are inclusive at the start
and exclusive at the end.

Appending to lists
Try this
apes = ["Homo sapiens", "Pan troglodytes",
"Gorilla gorilla"]
print("There are " + str(len(apes)) + " apes")
apes.append("Pan paniscus")
print("Now there are " + str(len(apes)) + " apes")
append() changes the variable in place!

+ and extend
Try this
apes = ["Homo sapiens", "Pan troglodytes", "Gorilla gorilla"]
monkeys = ["Paio ursinus", "Macaca mulatta"]
primates = apes + monkeys
print(str(len(apes)) + " apes")
print(str(len(monkeys)) + " monkeys")
print(str(len(primates)) + " primates")

platyrrhines = ["Cebus", "Sapajus", "Aotus"]
monkeys.extend(platyrrhines)
print monkeys
['Papio ursinus', 'Macaca mulatta', 'Cebus', 'Sapajus', 'Aotus']
Dictionaries are collections of key-value pairs. Very useful for
data without a natural order. Defined by {}.
In [1]: GenomeSize={"Homo sapiens": 3200.0,

"Escherichia coli": 4.6, "Arabidopsis thaliana": 157.0}
In [2]: GenomeSize
Out[2]:
{"Arabidopsis thaliana": 157.0,
"Escherichia coli": 4.6,
"Homo sapiens": 3200.0}

You can access the value of a dictionary by suppling the key for that
pair.
In [3]: GenomeSize["Arabidopsis thaliana"]
Out[3]: 157.0
In [4]: GenomeSize["Saccharomyces cerevisiae"] = 12.1
In [5]: GenomeSize
Out[5]:
{"Arabidopsis thaliana": 157.0,
"Escherichia coli": 4.6,
"Homo sapiens": 3200.0,
"Saccharomyces cerevisiae": 12.1}

Adding keys and changing values in dictionaries
ALREADY IN DICTIONARY!
In [6]: GenomeSize["Escherichia coli"] = 4.6
In [7]: GenomeSize
Out[7]:
{"Arabidopsis thaliana": 157.0,
"Escherichia coli": 4.6,
"Homo sapiens": 3200.0,
"Saccharomyces cerevisiae": 12.1}

In [8]: GenomeSize["Homo sapiens"] = 3201.1
In [9]: GenomeSize
Out[9]:
{"Arabidopsis thaliana": 157.0,
"Escherichia coli": 4.6,
"Homo sapiens": 3201.1,
"Saccharomyces cerevisiae": 12.1}

Creating dictionaries
You will often create a dictionary and then populate it. Try this!
enzymes = {}
enzymes['EcoRI'] = r'GAATTC' # r before the string
#tells python to automatically escape every character
enzymes['AvaII'] = r'GG(A|T)CC'
enzymes['BisI'] = r'GC[ATGC]GC'
enzymes.keys()
enzymes.values()
You can use zip() to turn two lists into a dictionary
keys = ('name', 'age', 'food')
values = ('Monty', 42, 'spam')
zip(keys, values) #makes a list of tuples
my_new_dict = dict(zip(keys, values))
my_new_dict
tuples contain sequences that are immutable and are defined
by ().
In [12]: FoodWeb=[("a","b"),("a","c"),("b","c"),("c","c")]
In [13]: FoodWeb[0]
Out[13]: ("a", "b")
In [14]: FoodWeb[0][0]
Out[14]: "a"
Note that tuples are "immutable"
In [15]: FoodWeb[0][0] = "bbb"
TypeError: "tuple" object does not support item assignment
In [16]: FoodWeb[0] = ("bbb","ccc")
In [17]: FoodWeb[0]
Out[17]: ("bbb", "ccc")
Use tuples when order matters.

sets are lists without duplicate elements
In [1]: a = [5,6,7,7,7,8,9,9]
In [2]: b = set(a)
In [3]: b
Out[3]: set([8, 9, 5, 6, 7])
In [4]: c=set([3,4,5,6])
In [5]: b & c
Out[5]: set([5, 6])
In [6]: b | c
Out[6]: set([3, 4, 5, 6, 7, 8, 9])
In [7]: b ^ c
Out[7]: set([3, 4, 7, 8, 9])
The operations are: Union | (or); Intersection & (and); symmetric
difference (elements in set b but not in c and in c but not in b), ^;
and so forth.

You can concatenate similar collection elements with +
In [1]: a = [1, 2, 3]
In [2]: b = [4, 5]
In [3]: a + b
Out[3]: [1, 2, 3, 4, 5]
In [4]: a = (1, 2)
In [5]: b = (4, 6)
In [6]: a + b
Out[6]: (1, 2, 4, 6)
In [7]: z1 = {1: "AAA", 2: "BBB"}
In [8]: z2 = {3: "CCC", 4: "DDD"}
In [9]: z1 + z2

--
TypeError Traceback (most recent call last)
----> 1 z1 + z2

TypeError: unsupported operand type(s) for +: "dict" and "dict"

Challenge
Do this:
I Define a list a = [1, 1, 2, 3, 5, 8].
I Extract [5, 8] in two different ways.
I Add the element 13 at the end of the list.
I Reverse the list.
I Define a dictionary m = {“a”: “.-”, “b”: “-. . . -”, “c”: ’-.-.’}.
I Add the element “d”: “-..”.
I Update the value “b”: “-. . . ”.

Python programming best practices
We will try to instill as many standard practices as we can at the
beginning.
I Wrap lines so that they are less than 80 characters long. You

can use parentheses () or signal that the line continues using a
“backslash” .

I Use 4 spaces for indentation, no tabs.
I Separate functions using a blank line.
I When possible, write comments on separate lines.
I Use docstrings to document how to use the code, and

comments to explain why and how the code works.

