
EEB 177 Lecture 4

Topics
▶ Advanced shell commands
▶ Permissions

Office Hours

Tues 2-3 Thurs 1-2

Terasaki 2149

Preliminaries

▶ Start nano: $ nano and save the file
“classwork-Tuesday-1-21.txt” to your class-assignments
directory

▶ push this to your remote repository
▶ you can write answers to today’s exercises in this file.

working with csv files in the shell

We can use several commands you have learned already plus the
cut command to easily manipulate csv files.

First, take a look at Pacifici2013_data.csv using your text
editor. Then move to the containing diretory and use a unix
command to view the first line (only) of that file.

What is the delimiter in this file?

head -n 1 Pacifici2013_data.csv

We can use cutto extract specific fields by specifying the delimiter
with -d and the desired columns with -fargument.

head -n 1 Pacifici2013_data.csv | cut -d ’;’ -f 1-4

If we wanted to list rows of data without the header, we can pipe
the results of cut to tail (remember tail -n +2 will show the
contents of a file or stream starting from the second line.

cut -d ";" -f 2 Pacifici2013_data.csv| head -n 5|
tail -n +2

Challenge

Show the Order of the first 5 species in the data set. Append this
to your class-exercises files for today.

(hint: you will need cut, |, tail, and head)

Challenge

use what you know plus the uniq command to count the number
of unique families in this file.hint: you will need to sort your data
before you apply uniq. Append the line “There are X unique
families:” (fill in the value for x) to your exercise file. Then append
the list of unique families to your exercise file.

Reformatting a csv file

We will now work through example 1.6.2 to create a data file with
the following fields: Order, Family, Genus, Scientific_Name and
AdultBodyMass_g with the following properties

▶ no headers
▶ data are sorted by size from large to small
▶ delimiter is a space

We will need to introduce the tr command to translate characters.

sorting and outputting the file

sort in reverse order of body mass

tail -n +2 ../data/Pacifici2013_data.csv | cut -d ";"
-f 2-6 | tr -s ";" " " | sort -r -n -k 6

create the file BodyM.csv

tail -n +2 ../data/Pacifici2013_data.csv | cut -d ";"
-f 2-6 | tr -s ";" " " | sort -r -n -k 6 > BodyM.csv

grep review

. Grep is a powerful pattern matching command that can be
combined with the regular expressions you used in lab.

Useful grep options: - -c to count lines - -w to match words - -i
to make case insensitive - -n to show line number of match.

use wc to the number of species in BodyM.csv

use grep to find all of the wombats (Vombatidae) in this list

grep Vombatidae BodyM.csv

how could you count these lines?

how could you count these lines? grep -c Vombatidae
BodyM.csv

use grep to find all of the genus Bos in this list.
try searching for Bos. What is going on?

use the -w command to find whole words

grep -w Bos BodyM.csv

-i makes the search case insensitive

grep -i Bos BodyM.csv

Other grep options

-B X finds x lines before -A X finds X lines after

find the 3 lines before all occurrences of Bos.

Other grep options

-n shows the line number of the match.

grep -n "Gorilla gorilla" BodyM.csv

finding all lines that do not match

-v returns everything that does not match the grep pattern

finding all lines that do not match

-v returns everything that does not match the grep pattern

How many lines do not match gorilla?

grep Gorilla BodyM.csv | grep -v gorilla

finding files with find

find allows you to search for files with specified attributes.

use the wildcard .* to find everything in your sandbox directory.

find .

.

./temp.txt

./cep-taxa.txt

./.gitignore

./junk

...

if you pass find a path it will give all files and folders in that
directory

find ../data/

../data

../data/toremove.txt

../data/Gesquiere2011_data.csv

../data/Saavedra2013_about.txt

...

if you pass find a path it will give all files and folders in that
directory

find ../data/

../data

../data/toremove.txt

../data/Gesquiere2011_data.csv

../data/Saavedra2013_about.txt

...

count all of the files and folders within ../data/

find options

You can search for a specific file with -name

find ../data/ -name "n30.txt"

This can be helpful when you don’t know exactly where you left a
file.

find /home/eeb-177-student/Desktop/ -name
"classwork-Tues-1-17.txt"

/home/eeb-177-student/Desktop/eeb-177/class-assignments/classwork-Tues-1-17.txt

find gets even more powerful with wildcards.

for example, to find all of the files with about in the data
directory….

find /home/eeb-177-student/Desktop/eeb-177/CSB/unix/
-iname "*about*"

/home/eeb-177-student/Desktop/eeb-177/CSB/unix/data/Saavedra2013_about.txt
/home/eeb-177-student/Desktop/eeb-177/CSB/unix/data/Marra2014_about.txt
/home/eeb-177-student/Desktop/eeb-177/CSB/unix/data/Pacifici2013_about.txt

note that -iname ignores the case in the file names

find the path to all of your classwork files and append these to you
classwork file for today.

find the path to all of your classwork files and append these to you
classwork file for today.

find /home/eeb-177-student/Desktop/ -iname "*class*"
>>
/home/eeb-177-student/Desktop/eeb-177/class-assignments/classwork-Tues-1-24.txt

specifying the depth of the search

to restrict the depth in the folder hierarchy of the search, use the
-maxdepth N option.

What will this line do?

$ find ../data -maxdepth 1 -name "*.txt" | wc -l

How many text files are there in ../dataif you do not restrict the
depth?

You can exclude certain files with not

find ../data/ -not -name "*about*" | wc -l

Permissions

In Unix, each file and directory has an attribute that determines
who can read (r), write (w), execute (x), or do nothing (-) to a file.
There are three categories of file users

▶ owner
▶ group (set of users)
▶ everyone else

you can see permissions with ls -l

permissions structure

chmod and chown

These commands change permissions and ownwership (u, g, or o
for user, group or other).

touch permissions.txt ls -l

-rw-rw-r-- 1 eeb-177-student eeb-177-student 0 Jan 24 07:51 permissions.txt

chmod u=rwx permissions.txt
ls -l
-rwxrw-r-- 1 eeb-177-student eeb-177-student 0 Jan 24 07:51 permissions.txt

notice that the user may now execute this file.

you can also add and remove permissions for a user with + and -.

chmod g+w,u+x permissions.txt
ls -l permissions.txt
-rwxrw-rw-

Add write permissions for all users.

Remove read, write, and execute permission from others

Writing a shell script

Lets illustrate some ideas about paths, scripts, and permissions by
writing a simple shell script. You are going to write a program in
your text editor that will execute a series of shell commands that
you have already learned.

open up gedit and type the following lines:

open gedit in your class-assignments folder and save the
following file as dir.sh:

#! /bin/bash
ls -la
echo "Above are the directory listings for this folder"
pwd
echo "right now it is :
date

save this file as dir.sh

Paths

there are two standard locations for programs– /usr/bin and /bin

use ls to see what is in them

The shell searches these directories (and others that have been
addded to the path) whenever you type a command.

Type echo $PATH to see your current path.

which will tell you the directory to a command. Try which cat

Creating a scripts directory and adding it to the path
we want a single working copy of each program on our machines so
we need to make sure the shell searches for our programs….

▶ go to your home directory
▶ create a directory called scripts

▶ to add the scripts directory to the path, open the .profile
file in gedit

▶ add this line (exactly) export
PATH="$PATH:$HOME/scripts"

▶
exit and save

Now we have created a program we would like to run and created
a path to the scripts directory. What else do we need to do?

hint: where is dir.sh right now?

hint: what permissions do we need to execute a script?

the shebang (#!)

#! is called the shebang–it means that all following contents of
script will be sent to the program following the shebang

#! /bin/bash sends it all to bash

remember,new scripts are not executable w/o changing permissions

checking permissions

▶ cd ~/scripts
▶ check permission with ls -l
▶ add permission to execute with chmod u+x

try running your program from different directories. Does it work?
Why?

exercise
Add your scripts directory to your remote repository. You will need
to

▶ git init in your scripts directory
▶ add your script
▶ commit your script
▶ create a remote repo on github
▶ copy and paste the command lines from the remote repo after

you create it.

git remote add origin
https://github.com/michaelalfaro/eeb-177-scripts.git
git remote add origin
https://github.com/michaelalfaro/eeb-177-scripts.git
git push -u origin master

you will be using your scripts directory throughout the
quarter, so make sure this repo is working

	exit and save

