
EEB 177 Lecture 3

Office Hours

Tues 2-3 Wednesday 1-2 Terasaki 2149

Preliminaries

▶ Start nano and save the file “classwork-Thursday-1-16.txt” to
your class-assignments directory

▶ push this to your remote repository
▶ you can write answers to today’s exercises in this file.

Topics
▶ shell and scripting

absolute and relative paths

▶ the absolute path is the entire path starting from the root, /
▶ /Users/michael_alfaro/tools

▶ the relative path is defined relative to the current directory
▶ if we were in the/tools directory above, we could get to the

root using the relative path: cd ../../../
▶

we could also go there using the absolute path: cd /

cp

▶ copies files
▶ cp file_to_copy path_to_destination

If you specify the full path,
your current location does not matter
$ cp ~/CSB/unix/data/Buzzard2015_about.txt

~/CSB/unix/sandbox/
assume your current location is the unix sandbox
we can use a relative path
$ cp ../data/Buzzard2015_about.txt .
the dot is shorthand to say "here"
rename the file in the copying process
cp ../data/Buzzard2015_about.txt ~/buzz-2015.txt

mv

moves (or renames) files
▶ mv file_to_move destination

move the file to the data directory

`$ mv Buzzard2015_about2.txt ../data/`

rename a file
$ mv ../data/Buzzard2015_about2.txt Buzzard-2015.txt

touch

▶ creates an empty file (or updates date of access of exiting file)
▶ touch my_file_name.txt

rm

▶ removes a file
▶ rm -r removes files recursively

mkdir

▶ creates an empty directory
▶ mkdir my_new_dir
▶ to make nested directories use -p
▶ mkdir -p dir_a/dir_b/dir_c

rmdir and rm

▶ removes an empty directory
▶ rmdir directory_name
▶ be careful–no trashcan in unix!
▶ use rm -r to recursively remove files from non-empty directory
▶ rm -r directoryname

history

▶ shows the command line history from the current session (this
is a BASH command)

▶ history n (try it)

>

the > symbol redirects output. This turns out tobe very handy. We
can redirect the command line history, for example, like so:

history n > unix-commands-used-in-class.txt

try it! Check to see if this file shows up in your current directory.

Challenge 3

1. cd to your class exercise directory
2. Create a nested directory sequence that corresponds to

Linnean taxonomy hierarchy in one line.
3. Navigate to the species directory and create three text files

corresponding to Disney animal sidekicks.
4. Move one file to the Class directory using the aboslute path.
5. Copy a second file to the Family directory using the relative

path
6. Delete the genus directory.
7. Push your command history file to the remote repo

Printing and modulating files

less

progressively print file to screen $ less Marra2014_data.fasta
>contig00001 length=527 numreads=2 gene=isogroup00001 �
status=it_thresh

ATCCTAGCTACTCTGGAGACTGAGGATTGAAGTTCAAAGTCAGCTCAAGCAAGAGATTT
…‘

cat

concatenate and print files to screen cat Marra2014_about.txt
Gesquiere2011_about.txt Buzzard2015_about.txt —

wc

line, word, and character count of a file

wc Gesquiere2011_about.txt >8 64 447
../data/Gesquiere2011_about.txt

challenge

a) Go to the data directory within CSB/unix

(b) How many lines are in file Marra2014_data.fasta?

(c) Create the empty file toremove.txt in the CSB/unix/sandbox
di- rectory without leaving the current directory.

(d) List the contents of the directory unix/sandbox.

(e) Remove the file to remove.txt.

Wildcards

You used wildcards in your lab. In the shell we can use the *
wildcard (match 0 or more characters except for a leading .) to
find specific file types.

For example, to see only text files we could type: ls *.txt. To
see the beginning of all files that start with pp we could type head
-n 2 pp*.

see 1.6.4 in text for more examples

less

this command lets you examine the contents of large text files.
You can move through these pages with ctrl-f and ctrl-b. Exit
less with q; h for more commands.

Try this

examine the file

Marra2014_data.fasta in the /CSB/unix/data directory

wc

gives line, word, and byte count of a file. Look at the -w -l -c
-m options in the manual. What do they do?

Try this

how man words in are the file Marra2014_about.txt ?

sort

sorts lines of a file alphabetically or numerically (with -n). To
choose a specific column for sorting, choose -k. For revese sort use
-r.

Try this

numerically sort the file Gesquiere2011_data.csv by the second
column.

head and tail

these commands show the beginning and end of a text file. Use -n
to specify the number of lines to show.

Try this

show the first and last five lines of the file
Gesquiere2011_data.csv

show everything but the first line of Gesquiere2011_data.csv
(hint: see the manual on how to start from a specific line)

appending to a file

>> appends output to a file.

ls > current_dir_contents.txt

cat history >> myhomework.txt
#challenge
The echo command prints a string to the screen. Tell the shell to
print your name. Now tell the shell to print your name to a file
called name.txt

pipe and redirect example

Lets use the commands you have learned already to avoid a tedious
task. Imagine that you want to know the number files within the
folder Saavedra2013. How could you do this?

pipe and redirect example

One way woud be to go to the folder and then count by hand. But
this would be tedious!

pipe and redirect example

We can use the shell to do this in two steps by creating a text file
that contains all of the file names and then counting the length of
that file.

ls ../data/Saavedra2013 >> filelist.txt wc -l
filelist.txt

But we can do even better using the pipe command, |. Pipe says
take the output on the left side and send it as input to the right
side. So, for example, we can do the above in one line:

ls ../data/Saavedra2013 | wc-l

csv files
One of the most common and useful formats for tabular data is
.csv (Comma Separated Values) where columns are separated by a
comma or other delimiter.

Figure 1:
https://www.dropbox.com/s/9jb11gxzpnk0qms/csv-example.png?dl=1

working with csv files in the shell

We can use several commands you have learned already plus the
cut command to easily manipulate csv files.

First, take a look at Pacifici2013_data.csv using your text
editor. Then move to the containing diretory and use a unix
command to view the first line (only) of that file.

What is the delimiter in this file?

head -n 1 Pacifici2013_data.csv

We can use cutto extract specific fields by specifying the delimiter
with -d and the desired columns with -fargument.

head -n 1 Pacifici2013_data.csv | cut -d ’;’ -f 1-4

If we wanted to list rows of data without the header, we can pipe
the results of cut to tail (remember tail -n +2 will show the
contents of a file or stream starting from the second line.

cut -d ’;’ -f 2 | head -n 5| tail -n +2

Challenge
Show the Order of the first 5 species in the data set. Append this
to your class-exercises files for today.
(hint: you will need cut, |, tail, and head)

Challenge
use what you know plus the uniq command to count the number
of unique families in this file.hint: you will need to sort your data
before you apply uniq. Append the line “There are X unique
families:” (fill in the value for x) to your exercise file. Then append
the list of unique families to your exercise file.

Reformatting a csv file

We will now work through example 1.6.2 to create a data file with
the following fields: Order, Family, Genus, Scientific_Name and
AdultBodyMass_g with the following properties

▶ no headers
▶ data are sorted by size from large to small
▶ delimiter is a space

We will need to introduce the tr command to translate characters.

Preliminaries

▶ Start nano: $ nano and save the file
“classwork-Thursday-1-16.txt” to your class-assignments
directory

▶ push this to your remote repository
▶ you can write answers to today’s exercises in this file.

grep review

. Grep is a powerful pattern matching command that can be
combined with the regular expressions you used in lab.

Useful grep options: - -c to count lines - -w to match words - -i
to make case insensitive - -n to show line number of match.

use grep to find all of the protected orchids (Orchidaceae) in this
list

use grep to find all of the protected orchids (Orchidaceae) in this
list

grep Orchidaceae cep-taxa.txt

how could you count these lines?

use grep to find all of the protected orchids (Orchidaceae) in this
list

grep Orchidaceae cep-taxa.txt

how could you count these lines? grep -c Orchidaceae
cep-taxa.txt

use grep to find all of the falcons in this list.

try searching for falcon. Then try searching for Falcon. What is
going on? How can you find occurrences regardless of case?

use grep to find all of the falcons in this list.

try searching for falcon. Then try searching for Falcon. What is
going on? How can you find occurrences regardless of case?

grep -i falcon cep-taxa.txt

Macaws are in the genus Ara. Find all of the macaws in this list
regardless of case. What is the problem now?

Macaws are in the genus Ara. Find all of the macaws in this list
regardless of case. What is the problem now?

How can you solve it?

Macaws are in the genus Ara. Find all of the macaws in this list
regardless of case. What is the problem now?

How can you solve it?

grep -i -w ara cep-taxa.txt

Other grep options

-B X finds x lines before -A X finds X lines after

find the 3 lines before all occurrences of Cebus.

Other grep options

-n shows the line number of the match.

what are the line numbers of all iguanas in the file?

Other grep options

-n shows the line number of the match.

what are the line numbers of all iguanas in the file?

grep -i -n -w iguana cep-taxa.txt

finding all lines that do not match

-v returns everything that does not match the grep pattern

finding all lines that do not match

-v returns everything that does not match the grep pattern

How many lines do not match ara?

what are the line numbers of those lines?

finding all lines that do not match

-v returns everything that does not match the grep pattern

How many lines do not match ara?

grep -i -v -c ara cep-taxa.txt

what are the line numbers of those lines? grep -i -v -n ara
cep-taxa.txt

finding files with find

find allows you to search for files with specified attributes.

use the wildcard .* to find everything in your sandbox directory.

find .

.

./temp.txt

./cep-taxa.txt

./.gitignore

./junk

...

if you pass find a path it will give all files and folders in that
directory

find ../data/

../data

../data/toremove.txt

../data/Gesquiere2011_data.csv

../data/Saavedra2013_about.txt

...

if you pass find a path it will give all files and folders in that
directory

find ../data/

../data

../data/toremove.txt

../data/Gesquiere2011_data.csv

../data/Saavedra2013_about.txt

...

count all of the files and folders within ../data/

find options

You can search for a specific file with -name

find ../data/ -name "n30.txt"

This can be helpful when you don’t know exactly where you left a
file.

find /home/eeb-177-student/Desktop/ -name
"classwork-Tues-1-17.txt"

/home/eeb-177-student/Desktop/eeb-177/class-assignments/classwork-Tues-1-17.txt

find gets even more powerful with wildcards.

for example, to find all of the files with about in the data
directory….

find /home/eeb-177-student/Desktop/eeb-177/CSB/unix/
-iname "*about*"

/home/eeb-177-student/Desktop/eeb-177/CSB/unix/data/Saavedra2013_about.txt
/home/eeb-177-student/Desktop/eeb-177/CSB/unix/data/Marra2014_about.txt
/home/eeb-177-student/Desktop/eeb-177/CSB/unix/data/Pacifici2013_about.txt

note that -iname ignores the case in the file names

find the path to all of your classwork files and append these to you
classwork file for today.

find the path to all of your classwork files and append these to you
classwork file for today.

find /home/eeb-177-student/Desktop/ -iname "*class*"
>>
/home/eeb-177-student/Desktop/eeb-177/class-assignments/classwork-Tues-1-24.txt

specifying the depth of the search

to restrict the depth in the folder hierarchy of the search, use the
-maxdepth N option.

What will this line do?

$ find ../data -maxdepth 1 -name "*.txt" | wc -l

How many text files are there in ../dataif you do not restrict the
depth?

You can exclude certain files with not

find ../data/ -not -name "*about*" | wc -l

Permissions

In Unix, each file and directory has an attribute that determines
who can read (r), write (w), execute (x), or do nothing (-) to a file.
There are three categories of file users

▶ owner
▶ group (set of users)
▶ everyone else

you can see permissions with ls -l

permissions structure

chmod and chown

These commands change permissions and ownwership (u, g, or o
for user, group or other).

touch permissions.txt ls -l

-rw-rw-r-- 1 eeb-177-student eeb-177-student 0 Jan 24 07:51 permissions.txt

chmod u=rwx permissions.txt
ls -l
-rwxrw-r-- 1 eeb-177-student eeb-177-student 0 Jan 24 07:51 permissions.txt

notice that the user may now execute this file.

you can also add and remove permissions for a user with + and -.

chmod g+w,u+x permissions.txt
ls -l permissions.txt
-rwxrw-rw-

Add write permissions for all users.

Remove read, write, and execute permission from others

Writing a shell script

Lets illustrate some ideas about paths, scripts, and permissions by
writing a simple shell script. You are going to write a program in
your text editor that will execute a series of shell commands that
you have already learned.

open up gedit and type the following lines:

#! /bin/bash
ls -la
echo "Above are the directory listings for this folder"
pwd
echo "right now it is :
date

save this file as dir.sh

Paths

there are two standard locations for programs– /usr/bin and /bin

use ls to see what is in them

The shell searches these directories (and others that have been
addded to the path) whenever you type a command.

Type echo $PATH to see your current path.

which will tell you the directory to a command. Try which cat

Creating a scripts directory and adding it to the path
we want a single working copy of each program on our machines so
we need to make sure the shell searches for our programs….

▶ go to your home directory
▶ create a directory called scripts

▶ to add the scripts directory to the path, open the
.bash_profile file in gedit

▶ add this line (exactly) export
PATH="$PATH:$HOME/scripts"

▶
exit and save

Now we have created a program we would like to run and created
a path to the scripts directory. What else do we need to do?

hint: where is dir.sh right now?

hint: what permissions do we need to execute a script?

the shebang (#!)

#! is called the shebang–it means that all following contents of
script will be sent to the program following the shebang

#! /bin/bash sends it all to bash

remember,new scripts are not executable w/o changing permissions

checking permissions

▶ cd ~/scripts
▶ check permission with ls -l
▶ add permission to execute with chmod u+x

try running your program from different directories. Does it work?
Why?

exercise
Add your scripts directory to your remote repository. You will need
to

▶ git init in your scripts directory
▶ add your script
▶ commit your script
▶ create a remote repo on github
▶ copy and paste the command lines from the remote repo after

you create it.

git remote add origin
https://github.com/michaelalfaro/eeb-177-scripts.git
git remote add origin
https://github.com/michaelalfaro/eeb-177-scripts.git
git push -u origin master

you will be using your scripts directory throughout the
quarter, so make sure this repo is working

	we could also go there using the absolute path: cd /
	exit and save

