EEB 177 Lecture 11

Tuesday Feb 18th, 2020

Topics

P functions
P debugging

Office Hours

Today 1045-1145

Download this data file
use curl
curl -L -o fishdata.csv http://bit.ly/fishlength

Write a block of code that will open the file “fish_data.csv”

1. Extract records for the family Labridae

2. Calculate the average length of the family

3. Write the Labridae records to a new csv file.

4. (Bonus) Print the length of the largest species in each family

Functions

Functions are blocks of code that do something useful. You have
already used many built-in functions of strings (str.lower(),
file.write()).

Functions take arguments. You define functions in python with
the def keyword.

def stringAnalyzer(ss):
length = len(ss)
print("This string has {} characters".format(length))

tt = stringAnalyzer("hello")
This string has 5 characters

This function expects a string, counts the characters in it, and
prints the total length. No value is returned in this case.

Returning values

More commonly your function will do something to the arguments
you provide and return the modified values.

Challenge

Write a function that will return the AT content of a DNA
sequence.

def get_at_content(dna):
length = len(dna)
a_count = dna.count('A'")
t_count = dna.count('T')
at_content = (a_count + t_count) / length
return at_content

Variable scope

Variables created within functions cannot be used outside of that
function.
def get_at_content(dna):
length = len(dna)
a_count = dna.count('A')
t_count dna.count ('T"')
at_content = (a_count + t_count) / length
return at_content

print(a_count)

NameError Traceback (most :

v e~ o rwe o wm o~ . o « - . N

Improving functions

One advantage to functions is that they allow you edit and improve
your code in a modular way. Here we will modify our code to avoid
long decimals and an incorrect AT content when lowercase values
are passed to the function For the these examples we want our
function to work correctly on the following four lines.

#we want our function to properly execute these lines
my_at_content = get_at_content ("ATGCGCGATCGATCGAATCG")
print (str(my_at_content))

print(get_at_content ("ATGCATGCAACTGTAGC"))
print(get_at_content ("aactgtagctagctagcagegta™))

unimproved version

def get_at_content(dna):
length = len(dna)
a_count = dna.count('A')
t_count dna.count('T")
at_content = (a_count + t_count) / length
return at_content

this gives some problems

print(get_at_content ("ATGCATGCAACTGTAGC"))
0.529411764706

print(get_at_content ("aactgtagctagctagecagegta))
0.0

Improved version

def get_at_content(dna):
length = len(dna)
a_count = dna.upper().count('A')
t_count = dna.upper().count('T"')
at_content = (a_count + t_count) / length
return round(at_content, 2)

my_at_content = get_at_content ("ATGCGCGATCGATCGAATCG")
print (str(my_at_content))

print(get_at_content ("ATGCATGCAACTGTAGC"))

print (get_at_content("aactgtagctagctagecagegta))

Better! Here we have added upper() and round() methods to
format values before they are returned. What if we wanted the
number of decimal places to be an argument in our function so
that the user could specify the decimal length?

Modify your function to do this Does it work?

Here is one way to control the number of significant figures
def get_at_content(dna, sig_figs):
length = len(dna)
a_count = dna.upper().count('A")
t_count = dna.upper().count('T"')
at_content = (a_count + t_count) / length
return round(at_content, sig_figs)

Encapsulation

OK you have made changes to your function to improve
formatting. What you may not have noticed is that you did not
need to modify (much) the rest of the program outside the
function. This demonstrates the idea of encapsulation which
really just mean breaking up a big program in to smaller parts that
can be managed in a straightforward way.

Keep this idea in mind as you start to consider you final projects!

Keyword arguments

If you define a function in the typical way, the order that you pass
the arguments is critical.
In [62]: def out0fOrder(number, pet):
et print "I own {} {}s".format(number, pet)
In [63]: out0fOrder(3, "dog")
I own 3 dogs
In [64]: outOfOrder("dog", 3)
I own dog 3s

Keyword arguments, wherein the name of the argument followed by
an “=" followed by the value, can help avoid these kinds of errors.

out0f0rder (number=3, pet="dog")
#same as
outOf0Order (pet="dog", number=3)

Default values
It is often useful to pass a default value to a function that can be
overridden.
def get_at_content(dna, sig_figs=2):
length = len(dna)
a_count = dna.upper().count('A")
t_count = dna.upper().count('T"')
at_content = (a_count + t_count) / length
return round(at_content, sig_figs)

get_at_content ("ATCGTGACTCG")

get_at_content ("ATCGTGACTCG", 3)

get_at_content ("ATCGTGACTCG", sig_figs=4)

Now the value will be written to two decimal places unless
otherwise specified.

Testing functions

It is important that your code is behaving the way you expect it

will. One way to do this is to invoke functions with arguments that
should produce a known value. You can use the assert function to

test if your code passes this test.

assert get_at_content("ATGC") == 0.5 #this should work
assert get_at_content ("ATGCNNNNNNNNNN") == 0.5 #what about
Modify your get_at_content() program so that you function will

pass an assert with “Ns”

Improved code

def get_at_content(dna, sig_figs=2):
dna = dna.replace('N', '')
length = len(dna)
a_count = dna.upper().count('A")
t_count = dna.upper().count('T"')
at_content = (a_count + t_count) / length
return round(at_content, sig_figs)

Now the function passes the assert test.

It is a good idea to include a series of assert tests for functions you
creates. You can easily comment the assert statements out as
needed.

assert get_at_content("A") == 1

assert get_at_content("G") == 0

assert get_at_content("ATGC") == 0.5
assert get_at_content("AGG") == 0.33
assert get_at_content("AGG", 1) == 0.3

assert get_at_content("AGG", 5) == 0.33333

Debugging
the implementation of the python debugger (pdb)Ipython provides
another way of searching out bugs. Lets examine it. Start with this
function.
def createabug(x):

y = x**4

z = 0.

y =y/z

return y

createabug(5)
What happens?

Use your text editor to save this file as debugme.py in your
classwork directory, Load and execute your function:
In [1]: %run debugme.py

> 4 y =y/z

5 return y
6

ZeroDivisionError: float division by zero #doesn't work...

Now start the debugger in ipython and run again:
In [72]: 7pdb

Automatic pdb calling has been turned ON
In [73]: Jrun debugme.py

ZeroDivisionError: float division by zero
> /home/vagrant/scripts/debugme.py(4)createabug()

3 z = 0.
-——=> 4 y = y/z
5 return y
ipdb> # <---- NOTICE THIS!

Now we are in the debugger shell!

pdb commands

Within the debugger we can move around in our code and examine
variables to see what is happening.
P n move to the next line.
P ENTER repeat the previous command.
P s “step” into function or procedure (i.e., continue the
debugging inside the function, as opposed to simply run it). p
X print variable x.
P c continue until next break-point.
» q quit
P | print the code surrounding the current position. r continue
until the end of the function.

try out pdb

ipdb> p x

25

ipdb> p y

390625

ipdb> pz

%% NameError: name 'pz' is not defined
ipdb> px

%% NameError: name 'px' is not defined
ipdb> p x

25

ipdb> p y

390625

ipdb> p z

0.0

ipdb> p y/z

x*x* ZeroDivisionError: ZeroDivisionError('float division b;
ipdb> q

In [74]: pdb

Automatic pdb calling has been turned OFF

Automatically launch pdb

If you want to start pdb within a longer script, place this line at
the point you want to examine:

import pdb;

pdb.set_trace()

