
EEB 177 Lecture 10

Thursday Feb 10th, 2017

Topics
▶ for, if, else, while statements
▶ functions
▶ reading and writing files

Office Hours

Today 1045-1145 Wednesday 10-11

for loops have the following structure:

for x in y:
do something

y is a list (or list-like object) x is a variable names the colon sets
off an indented block of code (the body of the loop)

challenge

1. write a for loop that prints each letter of your partner’s name.
2. write a for loop prints that takes the following dictionary and

prints out a statement indicating whether the value of each
key is an even or odd number. {‘a’: 1, ‘b’: 2, ‘c’: 3, ‘d’: 4, ‘e’:
5}

the range function

for number in range(6):
print(number)

more on range

With two numbers, range will count up from the 1st number
(inclusive) to the second (exclusive):

for number in range(3, 8):
print(number)

range and step

With three numbers, range will count up from the 1st to the
second with the step size given by the third:

for number in range(2, 14, 4):
print(number)

while loops

a while loop runs until some condition is met.

count = 0
while count<10:

print(count)
count = count + 1

program flow in python

In its simplest form, a program is just a series of instructions
(statements) that the computer executes one after the other. In
Python, each statement occupies one line (i.e., it is terminated by
a newline character). Other programming languages use special
characters to terminate statements (e.g., ; is used in C).

Lets demonstrate statements that control flow in python with a
simple program.

conditional tests
A condition is simply a bit of code that can produce a true or false
answer.
print(3 == 5)
print(3 > 5)
print(3 <=5)
print(len("ATGC") > 5)
print("GAATTC".count("T") > 1)
print("ATGCTT".startswith("ATG"))
print("ATGCTT".endswith("TTT"))
print("ATGCTT".isupper())
print("ATGCTT".islower())
print("V" in ["V", "W", "L"])

we use conditional tests to control the flow of our program
expression_level = 125
if expression_level > 100:

print("gene is highly expressed")

if, elif, else

if and else create branching points in your program resulting in the
execution of different blocks of code depending on a condition.

x=4
if x % 2 == 0:

print("Divisible by 2") #body of loop

note indentation to designate loop body

We can use else to specify an action when a condition is not met.

x=4
if x % 2 == 0:

print("Divisible by 2")
else:

print("Not divisible by 2")

expression_level = 125
if expression_level > 100:

print("gene is highly expressed")
else:

print("gene is lowly expressed")

If we have multiple cases that need to be evaluated, elif is useful…

x = 17
if x % 2 == 0:

print("Divisible by 2")
elif x % 3 == 0:

print("Divisible by 3")
elif x % 5 == 0:

print("Divisible by 5")
elif x % 7 == 0:

print("Divisible by 7")
else:

print("Not divisible by 2, 3, 5, 7")

Challenge
change the program below so that it reports the temperature in
Fahrenheit or Celsius depending on user input.
xx = input("What is the temperature in Fahrenheit?")
yy = (float(xx) - 32) * 5 / 9
print("The temperature in Celsius is {}".format(yy))

if, elif, and else part II
we can handle complex flow with these statements.
file1 = open("one.txt", "w")
file2 = open("two.txt", "w")
accs = ['ab56', 'bh84', 'hv76', 'ay93', 'ap97', 'bd72']
for accession in accs:

if accession.startswith('a'):
file1.write(accession + "\n")

else:
file2.write(accession + "\n")

use and, or and not to specify complex conditionals

accs = ['ab56', 'bh84', 'hv76', 'ay93', 'ap97', 'bd72']
for accession in accs:

if accession.startswith('a') and accession.endswith('3'):
print(accession)

accs = ['ab56', 'bh84', 'hv76', 'ay93', 'ap97', 'bd72']
for accession in accs:

if accession.startswith('a') or accession.startswith('b'):
print(accession)

accs = ['ab56', 'bh84', 'hv76', 'ay93', 'ap97', 'bd72']
for acc in accs:

if acc.startswith('a') and not acc.endswith('6'):
print(acc)

file1 = open("one.txt", "w")
file2 = open("two.txt", "w")
file3 = open("three.txt", "w")
accs = ['ab56', 'bh84', 'hv76', 'ay93', 'ap97', 'bd72']
for accession in accs:

if accession.startswith('a'):
file1.write(accession + "\n")

elif accession.startswith('b'):
file2.write(accession + "\n")

else:
file3.write(accession + "\n")

Reading and writing files

To work with text file contents you need to first open the file and
then read the contents in as a string

open the file
my_file = open("dna.txt")
read the contents
my_dna = my_file.read()
calculate the length
dna_length = len(my_dna)
print the output
print("sequence is " + my_dna + " and length is " + str(dna_length))

Functions

Functions are blocks of code that do something useful. You have
already used many built-in functions of strings (str.lower(),
file.write()).

Functions take arguments. You define functions in python with
the def keyword.

def stringAnalyzer(ss):
length = len(ss)
print("This string has {} characters".format(length))

tt = stringAnalyzer("hello")
This string has 5 characters

This function expects a string, counts the characters in it, and
prints the total length. No value is returned in this case.

Returning values
More commonly your function will do something to the arguments
you provide and return the modified values.
def get_at_content(dna):

length = len(dna)
a_count = dna.count('A')
t_count = dna.count('T')
at_content = (a_count + t_count) / length
return at_content

Variable scope
Variables created within functions cannot be used outside of that
function.
def get_at_content(dna):

length = len(dna)
a_count = dna.count('A')
t_count = dna.count('T')
at_content = (a_count + t_count) / length
return at_content

print(a_count)

NameError Traceback (most recent call last)
<ipython-input-56-2ff0b7bfbd0c> in <module>()
----> 1 print(a_count)

NameError: name 'a_count' is not defined

Improving functions
One advantage to functions is that they allow you edit and improve
your code in a modular way. Here we will modify our code to avoid
long decimals and an incorrect AT content when lowercase values
are passed to the function For the these examples we want our
function to work correctly on the following four lines.
#we want our function to properly execute these lines
my_at_content = get_at_content("ATGCGCGATCGATCGAATCG")
print(str(my_at_content))
print(get_at_content("ATGCATGCAACTGTAGC"))
print(get_at_content("aactgtagctagctagcagcgta"))

unimproved version

def get_at_content(dna):
length = len(dna)
a_count = dna.count('A')
t_count = dna.count('T')
at_content = (a_count + t_count) / length
return at_content

this gives some problems

print(get_at_content("ATGCATGCAACTGTAGC"))
0.529411764706
print(get_at_content("aactgtagctagctagcagcgta"))

0.0

Improved version
def get_at_content(dna):

length = len(dna)
a_count = dna.upper().count('A')
t_count = dna.upper().count('T')
at_content = (a_count + t_count) / length
return round(at_content, 2)

my_at_content = get_at_content("ATGCGCGATCGATCGAATCG")
print(str(my_at_content))
print(get_at_content("ATGCATGCAACTGTAGC"))
print(get_at_content("aactgtagctagctagcagcgta"))

Better! Here we have added upper() and round() methods to
format values before they are returned. What if we wanted the
number of decimal places to be an argument in our function so
that the user could specify the decimal length?

Modify your function to do this Does it work?

Here is one way to control the number of significant figures
def get_at_content(dna, sig_figs):

length = len(dna)
a_count = dna.upper().count('A')
t_count = dna.upper().count('T')
at_content = (a_count + t_count) / length
return round(at_content, sig_figs)

Encapsulation
OK you have made changes to your function to improve
formatting. What you may not have noticed is that you did not
need to modify (much) the rest of the program outside the
function. This demonstrates the idea of encapsulation which
really just mean breaking up a big program in to smaller parts that
can be managed in a straightforward way.
Keep this idea in mind as you start to consider you final projects!

Keyword arguments
If you define a function in the typical way, the order that you pass
the arguments is critical.
In [62]: def outOfOrder(number, pet):

....: print "I own {} {}s".format(number, pet)

....:
In [63]: outOfOrder(3, "dog")
I own 3 dogs
In [64]: outOfOrder("dog", 3)
I own dog 3s

Keyword arguments, wherein the name of the argument followed by
an “=” followed by the value, can help avoid these kinds of errors.

outOfOrder(number=3, pet="dog")
#same as
outOfOrder(pet="dog", number=3)

Default values
It is often useful to pass a default value to a function that can be
overridden.
def get_at_content(dna, sig_figs=2):

length = len(dna)
a_count = dna.upper().count('A')
t_count = dna.upper().count('T')
at_content = (a_count + t_count) / length
return round(at_content, sig_figs)

get_at_content("ATCGTGACTCG")
get_at_content("ATCGTGACTCG", 3)
get_at_content("ATCGTGACTCG", sig_figs=4)
Now the value will be written to two decimal places unless
otherwise specified.

Testing functions
It is important that your code is behaving the way you expect it
will. One way to do this is to invoke functions with arguments that
should produce a known value. You can use the assert function to
test if your code passes this test.
assert get_at_content("ATGC") == 0.5 #this should work
assert get_at_content("ATGCNNNNNNNNNN") == 0.5 #what about this?
Modify your get_at_content() program so that you function will
pass an assert with “Ns”

Improved code
def get_at_content(dna, sig_figs=2):

dna = dna.replace('N', '')
length = len(dna)
a_count = dna.upper().count('A')
t_count = dna.upper().count('T')
at_content = (a_count + t_count) / length
return round(at_content, sig_figs)

Now the function passes the assert test.

It is a good idea to include a series of assert tests for functions you
creates. You can easily comment the assert statements out as
needed.
assert get_at_content("A") == 1
assert get_at_content("G") == 0
assert get_at_content("ATGC") == 0.5
assert get_at_content("AGG") == 0.33
assert get_at_content("AGG", 1) == 0.3
assert get_at_content("AGG", 5) == 0.33333

Debugging
the implementation of the python debugger (pdb)Ipython provides
another way of searching out bugs. Lets examine it. Start with this
function.
def createabug(x):

y = x**4
z = 0.
y = y/z
return y

createabug(5)
What happens?

Use your text editor to ave this file as debugme.py in your
classwork directory, Load and execute your function:
In [1]: %run debugme.py
...
----> 4 y = y/z

5 return y
6

ZeroDivisionError: float division by zero #doesn't work....

Now start the debugger in ipython and run again:
In [72]: %pdb
Automatic pdb calling has been turned ON
In [73]: %run debugme.py
...
ZeroDivisionError: float division by zero
> /home/vagrant/scripts/debugme.py(4)createabug()

3 z = 0.
----> 4 y = y/z

5 return y

ipdb> # <---- NOTICE THIS!
Now we are in the debugger shell!

pdb commands
Within the debugger we can move around in our code and examine
variables to see what is happening.

▶ n move to the next line.
▶ ENTER repeat the previous command.
▶ s “step” into function or procedure (i.e., continue the

debugging inside the function, as opposed to simply run it). p
x print variable x.

▶ c continue until next break-point.
▶ q quit
▶ l print the code surrounding the current position. r continue

until the end of the function.

try out pdb
ipdb> p x
25
ipdb> p y
390625
ipdb> pz
*** NameError: name 'pz' is not defined
ipdb> px
*** NameError: name 'px' is not defined
ipdb> p x
25
ipdb> p y
390625
ipdb> p z
0.0
ipdb> p y/z
*** ZeroDivisionError: ZeroDivisionError('float division by zero',)
ipdb> q
In [74]: pdb
Automatic pdb calling has been turned OFF

Automatically launch pdb
If you want to start pdb within a longer script, place this line at
the point you want to examine:
import pdb; pdb.set_trace()

