
Lecture Homework #2 (Due Tuesday, 1/21 be-
fore lecture by 9:30am)

Notes about this assignment:

• To get full credit for this assignment, you will need to have at least 3
commits spanning 3 different days showing your progress working on this
assignment.

• You are encouraged to have a separate text file as a log to explain what you
are doing and any problems that you may have encountered throughout
solving each problem. (Remember, you can use the history command as
well as use a nicely formatted markdown file (.md) to show the commands
you are entering and the results that you get. Feel free to use markdown
(.md) for files instead of .txt where appropriate.

• You must attempt and try all of these problems for this assignment. If you
get stuck, work with others and consult the course discussion forum.

• Everything that we are doing for this assignment is discussed throughout
the first chapter of the textbook, so if you are getting stuck, work through
the examples in the first chapter of the book.

• If you commit each day (Friday, Saturday, Sunday, Monday) up until
Tuesday, you will also get some extra credit for this assignment.

• For the optional, extra credit assignments (1.10.3 and 1.10.4), you can only
get extra credit if you successfully complete all of the other parts of the
assignment (parts 1-5). Do not attempt these assignments until you have
finished the other parts (if time permits).

Part 1:

1. Download this text file using the wget command into your sandbox
directory (within ~/Developers/repos/CSB/unix/sandbox/): wget -c
http://dev.shawntylerschwartz.com/docs/paragraphs.txt.

2. Make a new folder in your class-assignments directory with the name
homework-two and move this paragraphs.txt file into that location.
Then, do the git add-commit-push workflow again.

3. Traverse to your class-assignments/homework-two/ directory and re-
name the file easy-question.txt. Then, do the git add-commit-
push workflow again.

4. Create a text file titled hw2-part1-commands.txt containing the com-
mands you used to accomplish this task. This file should be inside the
homework-two directory. Then, do the git add-commit-push work-
flow again.

Part 2

1



1. Use the head command to examine the first 25 lines of the
Pacifici2013_data.csv file in ~/Developers/repos/CSB/unix/data/.

2. Now create a new text file with only the first 25 lines of that file with the
name Pacifici-25lines.txt in your class-assignments/homework-two/
directory.

3. Now create another text file that contains the number of words in the first
25 lines of the file with the name Pacifici-25wordcount.txt in your
class-assignments/homework-two/ directory.

4. Create a text file titled hw2-part2-commands-1.txt containing the com-
mands you used to accomplish this task. This file should be inside the
homework-two directory. Then, do the git add-commit-push work-
flow again.

In section 1.6.1 of the textbook, the pipe | is introduced. The pipe command
allows you to take the output from one command and subsequently use it in
the next command. Given this command, find the number of words in the first
25 lines as you did above using the pipe command to avoid making an
intermediate text file.

5. Create a text file titled hw2-part2-commands-2.txt containing the com-
mands you used to accomplish this task. This file should be inside the
homework-two directory. Then, do the git add-commit-push work-
flow again.

Part 3

Let’s use the pipe again to count the number of lines in the ~/Developers/repos/CSB/unix/data/
directory (i.e., count the number of lines that are listed when you list the
contents of the data directory).

1. Output the number of lines (in one line of code, using pipe) to a text file
named pipe-data-lines.txt.

2. Using cat and | in one line of code, concatentate any 2 .fasta files from the
~/Developers/repos/CSB/unix/data/miRNA/ directory and count the
total number of characters using the word count (wc) command. Out-
put this to a text file named fasta-cat.txt. Then, do the git add-
commit-push workflow again.

The cut command allows one to extract data columns that are formatted in a
.csv format (csv stands for “comma separated values”, although the delimiting
(separating) character between values of the file (a.k.a., the delimiter) does not
necessarily need to be a comma).

3. Examine the Pacifici2013_data.csv file using the head command
and identify the delimiter. (Write this down in a text file named
Pacifici-delim.txt.) Then, do the git add-commit-push work-
flow again.

2



4. Now use the cut command on this Pacifici2013_data.csv file to extract
the family of the first 10 records (hint: you will need to use pipe and
the head command and also specify the delimiter using -d with the cut
command).

Similar to the head command, the tail command allows you to look at the end
of a file.

5. Look at the last 5 records in the Pacifici2013_data.csv file using the
tail command.

The tail command can be used to skip the first few lines of a file with the +
command (it will therefore start the tail command from whatever line you give
after the plus).

6. Remove the first line of the Pacifici2013_data.csv file (as we don’t
want the header of the file).

7. Now, create a new text file with the name Pacifici-ten.txt that has the
first 10 records of the Pacifici2013_data.csv file (minus the header).
(Note: you will need to use both tail and head to accomplish this.)

8. Create a text file titled hw2-part3-commands.txt containing the com-
mands you used to accomplish this task. This file should be inside the
homework-two directory. Then, do the git add-commit-push work-
flow again.

Part 4

The unique (uniq) command allows you to see the unique values when duplicates
are present.

1. Use the wget command to download a text file containing fish species names
from a recent study Shawn conducted into your homework-two directory:
wget -c http://dev.shawntylerschwartz.com/docs/fish_species.txt
Then, do the git add-commit-push workflow..

2. Explore the sort, reverse sort, and unique commands with this text file.
Copy and paste your results into three separate text files for the results of
each of these three commands:

• fishes-sort.txt
• fishes-rev-sort.txt
• fishes-unique.txt

3. Create a text file titled hw2-part4-commands.txt containing the com-
mands you used to accomplish this task. This file should be inside the
homework-two directory. Then, do the git add-commit-push work-
flow again.

Work through exercises 1.6.2 and 1.6.3 from the textbook that will
help you with some of the tasks above.

3



Part 5

We are giong to create a data set that has the body size, order, family, genus, and
scientific name that we are going to extract from the Pacifici2013_data.csv
file. Things to keep in mind about the new data set that you are generating:

1. We don’t want the header from the original Pacifici2013_data.csv file,
so you will need to use the tail option to avoid extracting the first line.

2. We don’t want all of the data, just columns 2-6, so use the cut option with
the properly specified delimiter and column range values.

3. We don’t want semicolons separating the data (as semicolons are a non-
standard delimiter). Instead, use the tr command to subsitite spaces as
the new delimiter instead of semicolons.

4. To sort the file, we will want to sort on a numeric column (which is the
body mass column, column 6), so we will have to use -r to get it in the
reverse order, -n to sort numerically, and -k to specify the column.

5. Create a new file bodym.csv that contains all of the specifications from
above.

6. Create a text file titled hw2-part5-commands.txt containing the com-
mands you used to accomplish this task. This file should be inside the
homework-two directory. Then, do the git add-commit-push work-
flow again.

EXTRA CREDIT

Complete exercises 1.10.1 and 1.10.2 from the textbook. Try to get as far as
you can.

1. Post your solutions in a text file titled hw2-ec.txt.

4


	Lecture Homework #2 (Due Tuesday, 1/21 before lecture by 9:30am)

